
Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 1 C-DAC hyPACK-2013

Lecture Topic:

Multi-Core Processors : Shared Memory Prog:

Pthreads Part-I

Hybrid Computing – Co-Processors/Accelerators
Power-aware Computing – Performance of

Applications Kernels

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 2 C-DAC hyPACK-2013

 An Overview of Shared Memory Programming

 Shared Memory Programming - PThreads

 System Overview of Threads

 Multi Cores : Threads Parallel Programming

Lecture Outline : Following topics will be discussed

Shared Memory Programming – Pthreads

Source : Reference [4],[6], [7], [8]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 3 C-DAC hyPACK-2013

 It has a single address space and data resides in single

shared address space, thus does not have to be

explicitly allocated

 It is multithreading and asynchronous (Similar to

message-passing model)

 Workload can be either explicitly or implicitly allocated

 Communication is done implicitly through shared reads

and writes of variables. However synchronization is

explicit

Explicit Parallelism : Shared Variable Model

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 4 C-DAC hyPACK-2013

 A thread is defined as an independent stream of
instructions that can be scheduled to run as such by the
operating system.

 A thread is a discrete sequence of related instructions that
is executed independently of other instructions sequences

 A process can have several threads, each with its own
independent flow of control.

 Threads share the resources of the process that created it.

Defining Threads : What are threads ?

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 5 C-DAC hyPACK-2013

 The thread model takes a process and divide it into two parts

One contains resources used across the whole program (the
process wide information), such as program instructions and global
data. This part is referred to as the process.

The other contains information related to the execution state, such
as program counter, and a stack. This part is referred to as a
thread.

Pthread is a standardized model for dividing a program into
subtasks hose execution can be interleaved or run in parallel.

The “P” in Pthread comes form POSIX (Portable Operating System
Interface), the family of IEEE operating system interface standards
in which Pthread is defined. Other thread modes are Mach Threads
and NT Threads

Why Pthreads? : Thread Model

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 6 C-DAC hyPACK-2013

 Threads are usually the preferred way to parallelize codes on an SMP

 All threads share a common address space, so communication and

synchronization are much faster than possible with either explicit or

implicit distributed shared memory (DSM)

 Because all threads are part of the same process, co-coordinating

access to resources is very easy and is usually automatic.

 Example

 All the threads share the resources of the process like files etc.

Each thread need not open a separate copy.

Shared Memory Programming : Threads

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 7 C-DAC hyPACK-2013

Processors

Processes

Threads T1

µPi

OP1 OP2
. . . OPn

T2 Tm
. . .

Processors

Map to MMU

Map to

Processors

µPi : Processor OP1 : Process T1 : Thread MMU : Main Memory Unit

Relationship among Processors, Processes, and Threads

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 8 C-DAC hyPACK-2013

Parallel programming based on shared-memory model has not

progressed as much as message-passing model Why?

 Shared memory programs are written in a platform-specific

language for multiprocessors (mostly SMP’s) such programs are

not portable.

 Platform independent shared memory programming models :

 Pthreads, and Open MP.

 The SGI power C uses a small set of structured constructs

to extend C to a shared memory parallel language.

 The X3H5 standard has not gained wide acceptance, but

has influenced the design of several shared memory

programming languages.

(Contd…)

Shared Memory Programming : Threads

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 9 C-DAC hyPACK-2013

 An example of critical region is in a module where threads try to

retrieve messages

 In general you do not want several threads trying to retrieve a

given message at the same time so you would put a critical region

around code to retrieve a message :

• Enter critical region

• Get message from message queue

• Update pointers into message queue

• Leave critical region (allow other threads to enter)

 Remark :If two threads simultaneously try to retrieve a message,

one will be allowed to retrieve the message and the other will

blocked at the point where the critical region is entered

Shared Memory Programming : Threads
(Contd…)

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 10 C-DAC hyPACK-2013

 Threads may communicate to share work, synchronize

or do other tasks

 Because all of the threads are in same process, and will

therefore have a common address space, it is fast and

easy for them to communicate with each other through

global variables

Critical Region

 Simplest mechanism for synchronization is called critical

region

 A critical region is a block of code which at most one

thread can execute at a time

 Critical regions can be created with mutual exclusion

locks or MutEx’s.

Shared Memory Programming : Threads

(Contd…)

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 11 C-DAC hyPACK-2013

Benefits:

 Major benefit of multi threaded programs over non threaded ones is in

their ability to concurrently execute tasks.

 In providing concurrency, multithreaded programs introduce a

certain amount of overhead.

 Threaded programs have more overhead than a non-threaded one.

 Introducing threads in an application that can’t use concurrency, you’ll

add overhead without any performance benefit.

 Algorithms that are inherently concurrent must be parallelised to take

advantage of system.

Shared Memory Programming : Threads

(Contd…)

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 12 C-DAC hyPACK-2013

Why Use Threads Over Processes?

 Creation: Creating a new process can be expensive.
More resources and required. Threads are lightweight
processes. Threads don’t incur much overhead.

 Scheduling: Threads collaborate with each other –
processes compete.

 Memory Requirement: Each process has its own view of
memory and address space private to it. Threads share
same address space but have distinct stacks.

 Communication: Process use Inter-process
communication through files, pipes as they have private
address space and sometimes through an API like
Shared memory segments, Message Queues,
Semaphores. IPC is costly in terms of OS overheads.

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 13 C-DAC hyPACK-2013

Why Use Threads Over Processes?

 Synchronization: Process synchronization is very
complicated and expensive. Thread synchronization can
be achieved easily through the common address space.

 Context Switching: Thread task switching time is faster
as the context to be saved is minimum compared to a
process.

 Specific Requirement: Priority scheduling can be done
for specific threads.

Contd..

Conclusion: Threads are faster and easier.

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 14 C-DAC hyPACK-2013

 A process on a multithreaded system is more complex than a process

on other systems

 Processes from other systems typically own everything associated

with the execution:

 address space

 file description

 working directory

 Priority

 registers and everything else

 A multithreaded process may have many threads running concurrently

 It is difficult to have only one copy of certain resources.

Threads Parallel Programming

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 15 C-DAC hyPACK-2013

 A process is divided into two parts

 The highest level, called the process – contains global

information that is unique within the process or must be

know by all members of the process.

 Lower level is threads which include and manage part

of the information and resources of which the whole

process is composed.

Threads Parallel Programming

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 16 C-DAC hyPACK-2013

 Resources with process level scope include

 Address space

 File description

 Working directory

 Any resource that is necessarily process wide in space

 Resources with thread scope include

 Thread priority

 Signal work

 Registers, including counter and stack pointer

 CPU state

Threads Parallel Programming

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 17 C-DAC hyPACK-2013

 A thread is a user-level concept that is invisible to the

kernel

 Because threads are user-level object, thread operations

such as switching from one thread to another are fast

because they do not incur a context switch

 Threads are not visible to the kernel

 Threads are not scheduled for CPUs

 Threads have un-describable blocking behavior

(Contd…)

Threads Parallel Programming

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 18 C-DAC hyPACK-2013

 The operating system maps

software threads to hardware

execution resources

 Too much threading can hurt

Performance

Each Thread maintains its current machine state

At the hardware level, a thread is an execution path
that remains independent of other hardware thread
execution paths.

System Overview of Threads

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 19 C-DAC hyPACK-2013

(Processors and Chipset)
Architecture

(Hardware Abstraction Layer)
HAL

Process,

Threads and

Resource

Scheduler

IO

Manager
Memory

Manager

Kernel

Internal

Operational

Manager

Other

Operation

Units

System Libraries

Applications and Required Service Components

Application Layer

Different Layers of the Operating System /Threads

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 20 C-DAC hyPACK-2013

System Overview of Threads

 Three levels of threading is commonly used

 Each program thread frequently involves all
three levels

Computation Model of Threading

Used by executable application and handled by user-level OS

User-Level Threads

Used by operating system kernel and handled by kernel-level OS

Kernel-Level Threads

Used by each Processor

Hardware Threads

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 21 C-DAC hyPACK-2013

System View of Threads

 Understand the problems - Face using the
threads – Runtime Environment

Flow of Threads in an Execution Environment

Defining and

Preparing

Threads

Operating

Threads

Executing

Threads

Performed by

Programming

Environment

and Compiler

Performed by

OS using

Processes

Performed by

Processors

Showing return trip to represent that after

execution operations get pass to user space

Threads Above the Operating System

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 22 C-DAC hyPACK-2013

Operational Path Operational Path

Threads Inside the
Hardware

Concurrency Parallelism

System Overview of Threads

 Concurrency versus

Parallelism

 Thread stack allocation

 Sharing hardware

resources among

executing threads –

Concurrency

 Hyper-threading Technology

 Chip Multi-threading (CMT)

 Simultaneous Multi-threading (SMT)

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 23 C-DAC hyPACK-2013

Address 0

Address N

Region for
Thread 1

Stack

Stack

Stack

.

.

.

Program Code + Data

Heap

Region for
Thread 2

After thread creation, each thread needs to have its own stack space.

System Overview of Threads

 Thread stack size

 Thread stack allocation

 Know Operating System

Limitations

 Default Stack Size may

vary from system to

system

 Performance may vary

from system to system

 Bypass the default stack manager and manage

stacks on your own as per application demands

Stack Layout in a Multi-threaded Process

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 24 C-DAC hyPACK-2013

New

Ready Running

Waiting

Terminate
Enter Interrupt Exit

Event
Wait

Scheduler Dispatch Event
Completion

State Diagram for a Thread

System Overview of Threads

 Threads Creation

 Four Stages of

Thread Life Cycle

• Ready,

• Running,

• Waiting (blocked),

• Termination

 Finer Stages in debugging or analyzing a threaded application

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 25 C-DAC hyPACK-2013

 Identify a task that is suitable for threading by applying to it the
following criteria:

 It is independent of other tasks

 It can become blocked in potentially long waits

 It can use a lot of CPU cycles

 It must respond to asynchronous events

 Its work has greater or lesser importance than other work in the
application

Remark : Several programs - such as those written for database
managers, file servers, or print servers - are ideal applications
for threading

Designing Threaded Programs- Boss/Worker Model

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 26 C-DAC hyPACK-2013

 A single thread, the boss, accepts input for the entire program.
Based on that input, the boss passes off specific tasks to one or
more worker threads

 The boss creates each worker thread, assigns it tasks, and if
necessary, waits for it to finish

 The boss/worker model works well with servers (database
servers, file servers, window managers)

Remarks :

 It is important that you minimize the frequency with which the
boss and workers communicate.

 One thread is in charge of work assignments for the other threads

 The complexities of dealing with asynchronously arriving requests
and communications are encapsulated in the boss.

Designing Threaded Programs- Boss/Worker Model

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 27 C-DAC hyPACK-2013

 All threads work concurrently on their tasks without a specific
leader.

 It is also known as work crew model, one thread must create all
the other peer threads when the program starts.

 This thread subsequently acts as just another peer thread that
processes requests, or suspends itself waiting for the other peers
to finish.

 The peer model makes each thread responsible for its own input.
A peer knows its own input ahead of time, has its own private way
of obtaining its input, or shares a single point of input with other
peers.

Remark : The peer model is suitable for applications that have a
fixed well-defined set of inputs, such as matrix multipliers, parallel
data base search engines, and prime number generators.

Designing Threaded Programs- Peer Models

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 28 C-DAC hyPACK-2013

 The pipeline model assumes

 A long stream of input

 A series of sub-operations (known as stages or filters) through
which every unit of input must be processed.

 Each processing stage can handle a different unit of input at a
time.

Remark :

 An automotive assembly line is a classic example of a pipeline.

 A RISC (reduced instruction set computing) processors also fits
the pipeline model. The input to this pipeline is a stream of
instructions. Each instruction must pass through the stages of
decoding, fetching, operands, computation, and storing results

 That many instructions may be at various stages of processing at
the same time contributes to the exceptionally high performance
of RISC processors.

Designing Threaded Programs- Pipeline Models

Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 29 C-DAC hyPACK-2013

 Threads transfer data to each other using buffers.

 In boss/worker model, the boss must transfer requests to the
workers.

 In pipeline model, each thread must pass input to the thread that
performs the next stage of processing

 In peer model, peers may often exchange data

 Common Problems : Bugs easily creep into nearly every threaded
application. They result from oversights in the way the application
manages its shared resources. Managing resources is very difficult

 The basic rule for managing shared resources is simple and twofold

 Obtain a lock before accessing the resource

 Release the lock when you are finished with the resource

Designing Threaded Programs-Buffering Data

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 30 C-DAC hyPACK-2013

 A thread assumes either of two roles as it exchanges data in a buffer
with another thread. The thread that passes the data to another is
known as the producer, the one that receives that data is known as
consumer.

Designing Threaded Programs-Buffering Data

Buffer
Producer Consumer

Lock  The ideal producer/consumer
relationship requires

 A buffer

 A lock

 A suspend/resume mechanism

 A state information Source : Reference [4],[6], [7]

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 31 C-DAC hyPACK-2013

 A Matrix multiplication Program : Peer Model

 Crow, col = arow,1 * b1,col + arow,2 * b2,col + ….. + arow,n * bn,col

 Assume that the program does not involve I/O operations.

 Create a peer thread for each individual element in the result
array of the matrix C

 Does not require much unusual synchronization

 The main thread must wait for the peers to complete

 No data synchronization is required because the peers never
write to any shared locations

 The computations of each element in the the result array is
completely independent of the results for any other element in
the result array

Example for Threaded Program - Matrix Multiplication

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 32 C-DAC hyPACK-2013

Program

Peers

a

b

Mult

Mult

Mult

c

Input (static) Output

Array

Example for Threaded Program - Matrix Multiplication

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 33 C-DAC hyPACK-2013

Program

Peers

a

b

Mult

Mult

Mult

c

Input (static) Output

Array

Example for Threaded Program - Matrix Multiplication

CPU 0

CPU1

CPU 2

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 34 C-DAC hyPACK-2013

 Important issues in System Overview of Threading

 Defining Threads

 An Overview of Threads – OS /Hardware

 System Overview of Threads

 Different Thread Programming Model

Conclusions

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 35 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 36 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 37 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir,
and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP web
site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars Technica,
October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : Shared Memory Prog. : Pthreads Part-I 38 C-DAC hyPACK-2013

 Thank You
 Any questions ?

