
Multi-Core Processors : Alg. & Apps Overview- Part-I 1 C-DAC hyPACK-2013

Lecture Topic :
Multi-Core Processors :

 Algorithms & Applications Overview - Part-I

Hybrid Computing – Co-Processors/Accelerators
Power-aware Computing – Performance of

Applications Kernels

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-1: Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Multi-Core Processors : Alg. & Apps Overview- Part-I 2 C-DAC hyPACK-2013

Parallel Algorithmic Design

 Data parallelism; Task parallelism; Combination of Data and

Task parallelism

 Decomposition Techniques

Lecture Outline

Following Topics will be discussed

 Static and Load Balancing

 Mapping for load balancing

 Minimizing Interaction

 Overheads in parallel algorithms design

Data Sharing Overheads

Source : Reference :[1], [4]

Multi-Core Processors : Alg. & Apps Overview- Part-I 3 C-DAC hyPACK-2013

CAD Database Scientific modeling

Multi

programming
Shared

address
Message

passing
Data

parallel

Compilation

or library

Operating systems support

Communication hardware

Physical communication medium

Parallel applications

Programming models

Communication abstraction

User/system boundary

Hardware/Software

boundary

Layers of Abstraction in Parallel Computers

 Critical layers of abstraction lie between the application program

and actual hardware

Source : Reference :[1], [4]

Multi-Core Processors : Alg. & Apps Overview- Part-I 4 C-DAC hyPACK-2013

Questions to be answered

 How to partition the data?

 Which data is going to be partitioned?

 How many types of concurrency?

Parallel Algorithms and Design

 What are the key principles of designing parallel

algorithms?

 What are the overheads in the algorithm design?

 How the mapping for balancing the load is done

effectively?

Multi-Core Processors : Alg. & Apps Overview- Part-I 5 C-DAC hyPACK-2013

(Contd…)

Principles of Design of parallel algorithms

Two key steps

 Discuss methods for mapping the tasks to processors so that the

processors are efficiently utilized.

 Different decompositions and mapping may yield good

performance on different computers for a given problem.

Parallel Algorithmic Design

 It is therefore crucial for programmers to understand the

relationship between the underlying machine model and the

parallel program to develop efficient programs

Multi-Core Processors : Alg. & Apps Overview- Part-I 6 C-DAC hyPACK-2013

Implementation of Streaming Media Player on Multi-Core

 One decomposition of work using Multi-threads

 It consists of

 A thread Monitoring a network port for arriving data,

 A decompressor thread for decompressing packets

 Generating frames in a video sequence

 A rendering thread that displays frame at programmed intervals

Programming Aspects Examples

Multi-Core Processors : Alg. & Apps Overview- Part-I 7 C-DAC hyPACK-2013

Implementation of Streaming Media Player on Multi-Core

 The thread must communicate via shared buffers –

• an in-buffer between the network and decompressor,

• an out-buffer between the decompressor and renderer

 It consists of

 Listen to port ……..Gather data from the network

 Thread generates frames with random bytes (Random string of

specific bytes)

 Render threads pick-up frames & from the out-buffer and calls the

display function

 Implement using the Thread Condition Variables

Programming Aspects Example

Multi-Core Processors : Alg. & Apps Overview- Part-I 8 C-DAC hyPACK-2013

 Partitioning

 Communication

 Agglomeration

 Mapping

Basic steps in Designing Parallel Application

Source : Reference :[1], [4]

Multi-Core Processors : Alg. & Apps Overview- Part-I 9 C-DAC hyPACK-2013

Types of Parallelism

 Data parallelism

 Task parallelism

 Combination of Data and Task parallelism

 Stream parallelism

 Types of Parallelism

Multi-Core Processors : Alg. & Apps Overview- Part-I 10 C-DAC hyPACK-2013

Task parallelism

 Many tasks are executed concurrently is called task parallelism.

 This can be done (visualized) by a task graph. In this graph, the

node represent a task to be executed. Edges represent the

dependencies between the tasks.

 Sometimes, a task in the task graph can be executed as long as

all preceding tasks have been completed.

 Let the programmer define different types of processes. These

processes communicate and synchronize with each other

through MPI or other mechanisms.

Types of Parallelism : Task Parallelism
(Contd…)

Multi-Core Processors : Alg. & Apps Overview- Part-I 11 C-DAC hyPACK-2013

T00 = To

T01 T02

T03 T04 T05

T07 T08

Sub Task Graph for To

T10 = T1

T11
T12

Sub Task Graph for T1

T0

T1 T2

T3 T4 T5 T6

T7 T8 T9 T10

Task Graph

Types of Parallelism : Task Parallelism

Multi-Core Processors : Alg. & Apps Overview- Part-I 12 C-DAC hyPACK-2013

Programmer’s responsibility

Programmer must deal explicitly with process creation, communication

and synchronization.

Types of Parallelism : Task Parallelism
(Contd…)

Task parallelism

Example

 Vehicle relational database to process the following query

 (MODEL = “-------” AND YEAR = “-------”)

 AND (COLOR = “Green” OR COLOR = “Black”)

Multi-Core Processors : Alg. & Apps Overview- Part-I 13 C-DAC hyPACK-2013

The different tables generated by processing the query and their

dependencies.

Types of Parallelism : Task Parallelism
(Contd…)

Multi-Core Processors : Alg. & Apps Overview- Part-I 14 C-DAC hyPACK-2013

Finite Element Unstructured Mesh for Lake Superior Region

 Parallel Unstructured Adaptive Mesh/Mesh Repartitioning methods

Types of Parallelism : Task Parallelism
(Contd…)

 HPF / Automatic compiler techniques may not yield good
performance for unstructured mesh computations.

 Choosing right algorithm and message passing is a right
candidate for partition (decomposition) of unstructured mesh

(graph) onto processors. Task parallelism is right to obtain
concurrency.

Multi-Core Processors : Alg. & Apps Overview- Part-I 15 C-DAC hyPACK-2013

Integration of Task and Data Parallelism

 Two Approaches

 Add task parallel constructs to data parallel constructs.

 Add data parallel constructs to task parallel construct

Types of Parallelism : Data and Task Parallelism

(Contd…)

 Approach to Integration

 Language based approaches.

 Library based approaches.

Multi-Core Processors : Alg. & Apps Overview- Part-I 16 C-DAC hyPACK-2013

Advantages

 Generality

 Ability to increase scalability by exploiting both forms of parallelism

 in a application.

 Ability to co-ordinate multidisciplinary applications.

Types of Parallelism : Data and Task Parallelism

(Contd…)

Problems

 Differences in parallel program structure

 Address space organization

 Language implementation

Multi-Core Processors : Alg. & Apps Overview- Part-I 17 C-DAC hyPACK-2013

Stream Parallelism

 Stream parallelism refers to the simultaneous execution of different

programs on a data stream. It is also referred to as pipelining.

 The computation is parallelized by executing a different program at

each processor and sending intermediate results to the next

processor.

 The result is a pipeline of data flow between processors.

Types of Parallelism : Stream Parallelism

Multi-Core Processors : Alg. & Apps Overview- Part-I 18 C-DAC hyPACK-2013

Decomposition techniques

 Recursive decomposition

 Data decomposition

 Exploratory decomposition

 Hybrid decomposition

Decomposition Techniques
(Contd…)

Source : Reference :[1], [4]

Multi-Core Processors : Alg. & Apps Overview- Part-I 19 C-DAC hyPACK-2013

The quick sort recursion tree for sorting the sequence of 12 members.

Each shaded box corresponds to the pivot element used to split each

particular list.

Recursive Decomposition
(Contd…)

Multi-Core Processors : Alg. & Apps Overview- Part-I 20 C-DAC hyPACK-2013

Data decomposition

 Data decomposition is a powerful method for deriving

concurrency in algorithms that operate on large data structures.

 Decomposition of computations is done in two steps –

Data Decomposition

 First step : The data (or the domain) on which the

computations are performed is partitioned

 Second step : This data partitioning is used to induce a

partitioning of the computations into task which leads to data

level parallelism

Multi-Core Processors : Alg. & Apps Overview- Part-I 21 C-DAC hyPACK-2013

Decomposition of Input, Intermediate and output data

Data Decomposition

Intermediate

Algorithm

Partitioning

Input

Partitioning Partitioning

Output

(Contd…)

Multi-Core Processors : Alg. & Apps Overview- Part-I 22 C-DAC hyPACK-2013

 Any partitioning of the output suggests a decomposition of the overall

computation performed by the algorithm

 The degree of concurrency induced by this decomposition is a

powerful method to find concurrency

 This decomposition leads to parallel algorithms that require little or

no interaction among various concurrent tasks

Data Decomposition : Partitioning output data

Example:

 Adding of square matrices A and B to give matrix C = A + B

(Partition the computations by partitioning the output matrix into

groups each containing an equal number of matrix elements).

 Multiplication of square matrices A and B to give matrix C = A * B

 Problem of rendering a scene using the ray-tracing algorithm

Multi-Core Processors : Alg. & Apps Overview- Part-I 23 C-DAC hyPACK-2013

 In many algorithms, computations of some elements of output

depends upon the computation of other output elements.

 In such cases, computation of different output elements can not be

performed concurrently

 Sometimes these computations can be restructured as multi-stage

computation such that each output elements of any of the stages

can be computed independently of other output elements

Data Decomposition : Partitioning intermediate data

 Parallel Gauss elimination method to solve linear system of

matrix equations AX=B

 LU factorization to solve linear system of matrix equations

AX=B

 Adaptive repartitioning of finite element meshes - dynamic

load balancing methods

Multi-Core Processors : Alg. & Apps Overview- Part-I 24 C-DAC hyPACK-2013

Remark

 Partitioning the output data can be performed if each output can be

naturally computed as a function of the input. In many algorithms,

this is not possible or desirable to partition the output data.

 It is possible to decompose this computations by partitioning the

input array and assigning each input partition to a different task.

Example : Partitioning Input data: Partitioning a list around a

 pivot element

 For sorting algorithm, the individual elements of the output

cannot be efficiently determined in isolation.

 In such cases, it is sometimes possible to partition the input

data and then use this partitioning to induce concurrency

Data Decomposition : Partitioning Input data

Multi-Core Processors : Alg. & Apps Overview- Part-I 25 C-DAC hyPACK-2013

2
6
1
8
3
6
9
7
3
3
5
8
1
7
2
4

Input`

6
8
6
9
7
8
7
5
2
1
3
3
3
1
2
4

output

pivot

S
m

a
ll

er
 t

h
a
n

 t
h

e

p
iv

o
t

2
6
1
8

3
6
9
7

3
3
5
8

1
7
2
4

No. of

smaller

No. of

greater

2 2

1 3

2 1

3 3

Smaller-to-Greater
Prefix Sum of smaller

Greater-to-Smaller
Prefix Sum of greater

8

6

5

3

2

5

6

7

Using recursive

decomposition

6
8
6
9
7
8
7
5
2
1
3
3
3
1
2
4

output

 task 1

 task 2

 task 3

 task 4

 task 1

 task 2

 task 3

 task 4

+

Example : Sorting algorithm

Partitioning the input data around a pivot element and obtain concurrency

(Contd…)

Data Decomposition : Partitioning Input data

Multi-Core Processors : Alg. & Apps Overview- Part-I 26 C-DAC hyPACK-2013

Exploratory Decomposition

 Used to decompose problems whose underlying computations

correspond to a search of a space for solutions.

 Partition search space into smaller parts, and search each one of

these parts concurrently, until the desired solutions are found.

Exploratory Decomposition

(Contd…)

Example : A large company wants to award ten prizes to ten of its

randomly selected highly valued customers (a highly

valued customer is one that buys over $100,000 worth of

products annually)

Multi-Core Processors : Alg. & Apps Overview- Part-I 27 C-DAC hyPACK-2013

Example : Consider the problem of searching a state space (such as

finding a solution to a puzzle problem)

Exploratory Decomposition (Contd…)

Steps :

 One way of decomposing this computation is to split it into

tasks, each one searching a different portion of the search

space.

 The task of finding the shortest path from initial to final

configuration now translates to finding a path from one of these

newly generated nodes to final configuration.

 The 15 puzzle problem is typically solved using tree search

techniques. Starting from initial configuration, all possible

successor one generated.

Multi-Core Processors : Alg. & Apps Overview- Part-I 28 C-DAC hyPACK-2013

A 15-puzzle problem instance : (a) initial configuration; (b)-(e) a

sequence of moves leading form the initial to the final configuration. (f)

final configuration.

1 6 2 4

9 5 3 8

13 7 11

14 10 15 12

1 6 2 4

9 5 3 8

13 7 11

14

10

15 12

1 6 2 4

9 5 3 8

13 7 11

14

10

15 12

1 6 2 4

9 5 3 8

13

7 11

14

10

15 12

1 6 2 4

9

5 3 8

13

7 11

14

10

15 12

1

6

2 4

9

5

3

8

13

7

11

14

10

15

12

(a) (b) (c)

(d) (e) (f)

Exploratory Decomposition
(Contd…)

Multi-Core Processors : Alg. & Apps Overview- Part-I 29 C-DAC hyPACK-2013

Objectives :

 The amount of computation assigned to each processors is

balanced so that some processor do not idle while others are

executing tasks.

 The interactions among the different processors is minimized, so

that the processors spend most of the time in doing work.

 To balance the load among processors, it may be necessary to

assign tasks, that interact heavily, to different processors.

Remark : These objectives conflict with each other. The problem of

 finding a good mapping becomes harder

Load Balancing Techniques

Source : Reference :[1], [4]

Multi-Core Processors : Alg. & Apps Overview- Part-I 30 C-DAC hyPACK-2013

 Static load-balancing

 Distribute the work among

processors prior to the execution

of the algorithm

 Matrix-Matrix Computation

 Easy to design and implement

(Contd…)

Dynamic load-balancing

 Distribute the work among processors

 during the execution of the algorithm

 Algorithms that require dynamic load-balancing are somewhat

more complicated (Parallel Graph Partitioning and Adaptive Finite

Element Computations)

Load Balancing Techniques

Multi-Core Processors : Alg. & Apps Overview- Part-I 31 C-DAC hyPACK-2013

Using the block-cyclic distribution shown in (b) to distribute the

computations performed in array (a) will lead to load imbalances sparse

matrix in Gaussian elimination.

(Contd…)

Array Distribution schemes : Block Distributions of matrix; One

dimensional (strip); Two dimensional (checkerboard);Block cyclic

Distributions ;Randomized block distributions

Schemes for Static Load Balancing

Multi-Core Processors : Alg. & Apps Overview- Part-I 32 C-DAC hyPACK-2013

Matrix-Matrix addition

Remark : Different decomposition require different amount of data

Dense matrix-matrix multiplication

Data decomposition : When data decomposition is used to derive

concurrency a suitable decomposition of data can itself be used to

balance the load and minimize interactions.

Schemes for Static Load Balancing

Multi-Core Processors : Alg. & Apps Overview- Part-I 33 C-DAC hyPACK-2013

Dynamic partition

 There are problems in which we cannot statistically partition the

work among the processors

 In these problems, a static work partitioning is either impossible

(e.g. first class) or can potentially lead to serious load imbalance

problems (e.g., second and third classes)

Schemes for Dynamic Load Balancing
(Contd…)

 The only way to develop efficient message passing programs for

these classes of problem is if we allow dynamic load balancing.

 Thus during the execution of the program, work is dynamically

transferred among the processors that have a lot of work to the

processors that have little or no work

Multi-Core Processors : Alg. & Apps Overview- Part-I 34 C-DAC hyPACK-2013

 Three general classes of problems that fall into the category

(Contd…)

Schemes for Dynamic Load Balancing

 The first class consists of problems which all the tasks are

available at the beginning of the computation but the

amount of time required by each task is different and

cannot be determined

 The second class consists of problems in which tasks are

available at the beginning but as the computation

progresses, the amount of time required by each task

changes.

 The third class consists of problems in which tasks are

generated dynamically

Multi-Core Processors : Alg. & Apps Overview- Part-I 35 C-DAC hyPACK-2013

 Self-Scheduling methods

 Chunk Scheduling methods

 Master-Slave paradigm

 Randomization techniques

 Round robin methods

(Contd…)

Schemes for Dynamic Load Balancing

Multi-Core Processors : Alg. & Apps Overview- Part-I 36 C-DAC hyPACK-2013

 To refine mesh in parallel often require dynamic load balancing

algorithms

 Use diffusive and non-diffusive algorithms

 Adapted graph is partitioned from scratch using state of art

 multilevel graph partitioning.

 Incremental modification of re-partitioned graphs.

 Cut and paste re-partitioning algorithm.

Examples : Adaptive load balancing of unstructured meshes

(Contd…)

Schemes for Dynamic Load Balancing

Multi-Core Processors : Alg. & Apps Overview- Part-I 37 C-DAC hyPACK-2013

Graph partitioning of a

two dimensional region

Random distribution of

elements in a two

dimensional region

Graph Partitioning Algorithms

Multi-Core Processors : Alg. & Apps Overview- Part-I 38 C-DAC hyPACK-2013

Elements (evenly distributed)

Processor level nodes

(determined by elements on

each processor)

Global nodes (aligned with

processor-level nodes as

much as possible)

Mesh Distribution for Finite Element Computations

Multi-Core Processors : Alg. & Apps Overview- Part-I 39 C-DAC hyPACK-2013

A 15-puzzle problem instance : (a) initial configuration; (b)-(e) a

sequence of moves leading form the initial to the final configuration.

In this problem, it is not possible to get an accurate estimate of the

work associated with each task, as the size of the tree rooted at any

node can vary significantly.

(a) (b) (c)

1 6 2 4

9 5 3 8

13 7 11

14 10 15 12

1 6 2 4

9 5 3 8

13 7 11

14

10

15 12

1 6 2 4

9 5 3 8

13 7 11

14

10

15 12

1 6 2 4

9 5 3 8

13

7 11

14

10

15 12

1 6 2 4

9

5 3 8

13

7 11

14

10

15 12

1

6

2 4

9

5

3

8

13

7

1

1 14

10

15

12

(d) (e) (f)

Example : 15 Puzzle problem

Dynamic Load Balancing

Multi-Core Processors : Alg. & Apps Overview- Part-I 40 C-DAC hyPACK-2013

Idling overheads :

Processors can become idle for three main reasons.

Overheads in Algorithm Design
(Contd…)

 The first reason is due to load imbalances

 The second is due to computational dependencies.

 The third is due to inter-processor communication information

exchange and synchronization.

Multi-Core Processors : Alg. & Apps Overview- Part-I 41 C-DAC hyPACK-2013

Data sharing overheads

 In most non-trivial parallel programs, the tasks executed by

different processors require access to the same data.

 For example, in matrix-vector multiplication Y = Ax, in which tasks

correspond to computing contain access to the entire vector x.

(Here A is dense and sparse matrix).

 Some tasks require data that are generated dynamically by earlier

tasks.

Overheads in Algorithm Design

(Contd…)

Multi-Core Processors : Alg. & Apps Overview- Part-I 42 C-DAC hyPACK-2013

Data sharing overheads

 Data sharing can take different forms which depend on the

underlying architecture.

(Contd…)
Overheads in Algorithm Design

 On distributed memory machines, data is initially partitioned

among processors.

 On shared address space machines, data sharing is often

performed implicitly.

Multi-Core Processors : Alg. & Apps Overview- Part-I 43 C-DAC hyPACK-2013

Data sharing overheads

 Developing algorithms that minimize data sharing overheads often

involves intelligent task decomposition,

(Contd…)
Overheads in Algorithm Design

 Task distribution

 Initial data distribution

 Proper scheduling of the data sharing operations

 Collective data sharing operations

Multi-Core Processors : Alg. & Apps Overview- Part-I 44 C-DAC hyPACK-2013

Point-to-Point data sharing operations

 Collective Data Sharing Operations

 Collective Data Transfers

 Broadcast

 Gather

 Scatter

 All-to-All

(Contd…)
Overheads in Algorithm Design

 Collective Computations

 Reduction

 Collective Synchronization

 Barrier

Multi-Core Processors : Alg. & Apps Overview- Part-I 45 C-DAC hyPACK-2013

Cost of Data Sharing Operations

 Structured Data Sharing

 Dense Matrix-Matrix Multiplication

(Contd…)
Overheads in Algorithm Design

 Unstructured Data Sharing

 Sparse Matrix-Vector Multiplication

Multi-Core Processors : Alg. & Apps Overview- Part-I 46 C-DAC hyPACK-2013

Sparse Matrix A and the vector b Multiplication

 P1 needs to receive elements {8,9,10} from P2.

 P2 needs to receive only elements {4,6} from P1.

Sparse Matrix A and Vector Multiplication

Multi-Core Processors : Alg. & Apps Overview- Part-I 47 C-DAC hyPACK-2013

Extraneous Computations

 Parallel algorithms can potentially perform two types of

extraneous computations.

 The first type consists of non-essential computations that are

performed by the parallel algorithms but they are not

required by the serial one.

 In parallel algorithms, non-essential computation often arise

either because of speculative execution one.

(Contd…)
Overheads in Algorithm Design

 The second type of extraneous computation happens when more

than one processor ends up performing the same computations.

Example : Parallel search of a sparse graph

Multi-Core Processors : Alg. & Apps Overview- Part-I 48 C-DAC hyPACK-2013

Methods for containing interactions overheads

 Data sharing overheads

 Static vs Dynamic

 Data sharing interactions

Example : Sparse matrix-vector multiplication

 Regular vs irregular interactions

(Contd…) Overheads in Algorithm Design

Remark : One must strive to minimize the interaction overhead in the

 same way as the user to minimize the interaction overhead

 due to idling and extraneous computations.

 Two general schemes for dealing with interaction overheads.

Perform useful work while the interaction takes place

Try to reduce the interactions parallel programs

Multi-Core Processors : Alg. & Apps Overview- Part-I 49 C-DAC hyPACK-2013

 Maximum Utilization of the computing resources provides by Multi-

Core processors

 Ability of multi-core processors to increase application performance

depends on the use of multiple threads within applications.

 More difficult to manage thermally.

 Two processing cores sharing he same system bus and memory

bandwidth limits

 Improve energy efficiency - focusing on performance –per-watt

(Contd…)

Disadvantages using Multi Core

Multi-Core Processors : Alg. & Apps Overview- Part-I 50 C-DAC hyPACK-2013

Conclusions

Five step process for the design of parallel programs. These steps

are described as follows

(Contd…)
Overheads in Algorithm Design

 Identification of type of parallelism

 Decomposition to expose concurrency

 Mapping and interaction cost

 Extraneous computations

 Handling overheads

Multi-Core Processors : Alg. & Apps Overview- Part-I 51 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Alg. & Apps Overview- Part-I 52 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Alg. & Apps Overview- Part-I 53 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP web
site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars Technica,
October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : Shared Memory Programming: Pthreads Part-I 54 C-DAC hyPACK-2013

 Thank You
 Any questions ?

