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Basic Strategies 

 Identify the time consuming code sections 

 

 Add OpenMP directive to parallelize most time    

     consuming loops  

    #pragma omp 

 

 If a parallelized loop does not perform well   

  check the following 

 Parallel overhead 

 Small loop 

 Coverage &  Granularity 

 Load balance 

 Synchronization & Locality       
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 OpenMP : Use of Different OpenMP Pragmas 

 OpenMP Constructs – Synchronization  

Work sharing  - Minimizing Threading Overhead 

Runtime functions/environment variables 

 Example programs using different OpenMP Pragmas  

 Key factors That impact Performance and 

Performance Tuning Methodology 

Lecture Outline : 

Advance Features of  OpenMP  

Source : Reference : [4], [6], [14],[17], ]22], [28] 
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Example Program using different OpenMP Pragma 

 Example 1 : OpenMP Parallel & work-share directive 

 Matrix-Matrix Multiplication 

 Example 2 : OpenMP Data scope Clause “threadprivate” 
clause 

 Example 3 : OpenMP synchronization construct 

 Prime number calculation 

 Producer Consumer : Synchronization Issues 

 Example 4 : Performance tuning 
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OpenMP  Prog. : Parallel & Work-share Directive 

Implementation of Matrix into Matrix Multiplication : dim = 128 

and the number of threads = 4 

for(i=0; i < dim; i++){ 

     for(j=0; j < dim; k++){ 

       c(i,j) = 0;  

       for(k=0; k < dim; k++){ 

            c(i,j) += a(i,k)*b(k,j); 

       } 

     } 

}  

Loop Carried Independence : Challenges in Threading a Loop 
Source : Reference : [4] 

Example 1 : Matrix- Matrix Multiplication (Outer loop parallelize) 
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Implementation of Matrix into Matrix Multiplication : Static 

Scheduling of loops in matrix Multiplication  

dim = 128 and the number of threads = 4 

#pragma omp parallel for default(private)  \ 

shared(a,b,c,dim) num_threads(4)\ 

schedule(static) 

for(i=0; i < dim; i++){ 

     for(j=0; j < dim; k++){ 

       c(i,j) = 0;  

       for(k=0; k < dim; k++){ 

            c(i,j) += a(i,k)*b(k,j); 

       } 

     } 

}  

OpenMP  Prog. : Parallel & Work-share Directive 

Example 1 : Matrix- Matrix Multiplication (Outer loop parallel) 



Multi-Core Processors : Shared Memory Prog. OpenMP Part-III  7 C-DAC   hyPACK-2013 

Nesting parallel  loops in matrix Multiplication 

#pragma omp parallel for default(private)  \ 

shared(a,b,c,dim) num_threads(2)  

for (i=0; i < dim;  i++) { 

   #pragma omp parallel for default(private)  \ 

shared(a,b,c,dim) num_threads(2) 
   for(j=0; j < dim; j++){ 

            c(i,j) = 0; 
      #pragma omp parallel for default(private)\   

shared(a,b,c,dim) num_threads(2) 
       for(k=0; k < dim; k++){ 

            c(i,j) += a(i,k)*b(k,j); 

       } 

     } 

}  

Source : Reference : [4], [6] 

OpenMP  Prog. : Parallel & Work-share Directive 

Example 1 : Matrix- Matrix Multiplication (Inner loop parallel) 
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In-Order : The ordered Directive : Example :To compute the 

cumulative sum of i numbers of a list, we can add the current 

number to the cumulative sum of i-1 nos. of the list.  

cumalative_sum[0] = list[0];  

#pragma omp parallel for private(I)  \       

 shared (cumulative_sum, list, n) ordered 

for (i=1; i < n; i++) 

{ 

   /* Other processing on list[I] if needed  */  

    

   #pragma omp ordered;   

     { 

     cumlative_sum[i] = cumulative_sum[i-1]+list[i]; 

     } 

} 

OpenMP  Prog. : Example : Inner loop parallelize 

Source : Reference : [4], [6] 
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OpenMP  Prog. : Example : Pie Value 

Description : Method is based on generating random numbers 

in a unit length square and counting the number of points that 

fall within the largest circle inscribed in the square. 

Area of the Circle (πr2)  = π/4 

Area of Square = 1 X1  

 The fraction of random points that fall in 

the circle should approach to π/4 
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OpenMP  Prog. : Example : Pie Value 

1. Assign fixed number of points to each 

thread. 

2. Each thread generates random points 

and keeps  track of the number of points 

that land in circle locality. 

3. After all threads finish execution, their 

counts are combined to computer the 

value of π (by calculating the fraction 

over all threads and multiplying by 4) 

 

º 

º 
º 

º 
º 

º 
º 

Source : Reference : [4], [6]  
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OpenMP  Prog. : Example : Pie Value 

  Threaded progam to compute PI value 
#pragma omp parallel default(private)  \     

shared(npoints) reduction(+:sum) 

num_threads(8) 

{ 

 num_threads = omp_get_num_threads();  

 sample_points_per_thread=npoints/num_threads; 

 sum = 0.0;  

 for(i=0; i<sample_points_per_thread; i++){ 

    rand_no_x=(double)rand_r(&seed))/double((2<<14-1); 
     rand_no_y=(double)rand_r(&seed))/double((2<<14-1);  

    if((rand_no_x–0.5)*rand_no_x–0.5) +  
        (rand_no_y–0.5)*rand_no_y–0.5)) < 0.25 

     sum++;  

    } 
} 
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OpenMP  Prog. : Example : Pie Value 

  Threaded progam to compute PI value 
#pragma omp parallel default(private)  \     

shared(npoints) reduction(+:sum) 

num_threads(8) 

{ 

 sum = 0.0;  

 #pragma omp for  

 for(i=0; i < npoints; i++){ 

    rand_no_x=(double)rand_r(&seed))/double((2<<14-1); 
     rand_no_y=(double)rand_r(&seed))/double((2<<14-1);  

     if((rand_no_x–0.5)*rand_no_x–0.5) +  

              (rand_no_y–0.5)*rand_no_y–0.5)) < 0.25 
     sum++;  

    } 
} 
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OpenMP Directives : Synchronization Constructs  

THREAD 1 :  

Increment (x) 

{  

X= x+1 

} 

THREAD 1: 

 

10 LOAD A, (x address)  

20 ADD A, 1 

30 STORE A, x address) 

THREAD 1 :  

Increment (x) 

{  

X= x+1 

} 

THREAD 1: 

 

10 LOAD A, (x address)  

20 ADD A, 1 

30 STORE A, x address 

Consider a simple example where two threads on two 

different processors are both trying to increment a 

variable x at the same time (Assume x is initially 0) : 
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 Atomic is a special case of a critical section that can be 
used for certain simple statements.   

 It applies only to the update of a memory location (the 
update of X in the following example) 

C$OMP PARALLEL PRIVATE(B)  

 B =  DOIT(I) 

C$OMP ATOMIC 

 X = X + B 

C$OMP END PARALLEL 

OpenMP : Synchronization  
Contd… 

Source : Reference : [4], [6], [14],[17], ]22], [28] 



Multi-Core Processors : Shared Memory Prog. OpenMP Part-III  15 C-DAC   hyPACK-2013 

 The master construct denotes a structured block  that 
is only executed by the master thread. The other 
threads just skip it (no synchronization is implied). 

#pragma omp parallel private (tmp) 

{  

 do_many_things(); 

#pragma omp master 

 {     exchange_boundaries();   } 

#pragma barrier 

 do_many_other_things(); 

}  

OpenMP : Synchronization  
Contd… 
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 for (number =3 ; number < Maxnumber  ; number += 2 )  
 { 
                if (is_prime(number))   { 
 
                              Primearray[ Count ] = number; 
                              Count=Count+1; 
            } 
   }  
 
         

Activity 1: Analysis ( Serial Run ) 

 

 OpenMP Synchronization construct  

Example 3 : Prime Number calculation 
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Activity 1: Analysis (Serial Run) 
Prime no. found 

664578 

 OpenMP Synchronization construct  

Example 3 : Prime Number calculation 
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 #pragma omp parallel for  
 for (number =3 ; number < Maxnumber  ; number += 2 )  
 { 
                if (is_prime(number))   { 
 
                              Primearray[ Count ] = number; 
                              Count=Count+1; 
            } 
   }  
 
         

Activity 2 :   Design (Parallel Run) 
 
Insert OpenMP parallel for directive 

 OpenMP Synchronization construct  

Example 3 : Prime Number calculation 
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Activity 2 : Design ( Parallel Run) 
 
 

Prime count is different 
in serial & parallel run 
 

 OpenMP Synchronization construct 

Example 3 : Prime Number calculation 

Is this threaded implementation is right ? 

No, we are Getting the different result from the serial 
computation? 



Multi-Core Processors : Shared Memory Prog. OpenMP Part-III  20 C-DAC   hyPACK-2013 

 #pragma omp parallel for  
 for (number =3 ; number < Maxnumber  ; number += 2 )  
 { 
                if (is_prime(number))   { 
 
                              Primearray[  Count  ] = number; 
 
                              Count =  Count  +  1; 
            } 
   }         

Activity 3:   Debugging 
 

Synchronization : 
Data Race 

 OpenMP Synchronization construct  

Example 3 : Prime Number calculation 
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Activity 3 :   Debugging ( Thread Checker ) 

 OpenMP Synchronization construct  

Example 3 : Prime Number calculation 
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 #pragma omp parallel for  
 for (number =3 ; number < Maxnumber  ; number += 2 )  
 { 
      if (is_prime(number))   { 
  # pragma omp critical 
  {  
                              Primearray[ Count ] = number; 
                              Count=Count+1; 
  } 
            } 
   }  
 
         

Activity 4 :   Avoid Data-Race Condition 

 

Insert Synchronization Construct 

 OpenMP Synchronization construct  

Example 3 : Prime Number calculation 



Multi-Core Processors : Shared Memory Prog. OpenMP Part-III  23 C-DAC   hyPACK-2013 

Activity 4 : Parallel Run     
 
 

 OpenMP Synchronization construct  

Example 3 : Prime Number calculation 
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Producer/Consumer Problem : Synchronizing Issues 

Thread 1: 

Half the Work  

Thread 2: 

Half the Work  

Data in Memory 

Memory 

Bottlenecks 

Producer 

Thread 

Consumer 

Thread  

Data in Memory 

Communications 

Through Cache 

 Producer thread generates tasks and inserts it into a work-

queue.  

 The  consumer thread extracts tasks from the task-queue 

and executes them one at a time.  

Source : Reference : [4], [6] 
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 Possibilities & Implementation Issues on Multi cores   

 The producer thread must not overwrite the shared 

buffer when the previous task has not been picked up 

by a consumer thread 

 The consumer threads must not pick-up tasks until 

there is something present in the shared data 

structure. 

 Individual consumer threads should pick-up tasks 

one at a time. 

 Implementation can be done mutexes, condition Variables 

Producer/Consumer Problem : Synchronizing Issues 
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d 
Shared Data 

T = f (t) 
d = f (t) = s(…,ti,tj,tk,tl,…) 

Tj 

ti 

tl 

tj 

tk 

Shared data d depends on synchronization functions of time 

Shared Data Synchronization, Where Data d is protected 
by a Synchronization Operation 

Ti 

Synchronization order  
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new 

runnable 

new 

run method 

exits 

start 

stop 

blocked 

resume 

suspend 

notify 

wait 

not available 

wait for lock 

I/O complete 

block in I/O 

sleep 

done sleeping 

Pthreads:Synchronization  & Thread States 

 I/O Requests 

 

 Read-Write Locks 

 

 Available CPU 

 

 Release Locks 

 

 Critical Sections 
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Thread 1 

transfer 

Thread 2 Thread 1 Thread 2 

transfer 

transfer 

transfer 

Unsynchronized Unsynchronized 

 

Too little / too much 

synchronization  
 

  In-Correct 

Results  

 

Performance – 

Slow done the 

results  

 
 

 

Comparison of unsynchronized / synchronized threads 



Multi-Core Processors : Shared Memory Prog. OpenMP Part-III  29 C-DAC   hyPACK-2013 

Synchronization 

Atomicity Control 

Data 

Barrier Mutual Exclusion 

Semaphore 

and Lock 

Producer- 

Consumer 
Pool. 

Queue 

Pthreads : Various types of synchronization 

 Use of Scheduling techniques as means of 
Synchronization is not encouraged. – Thread Scheduling 
Policy, High Priority & Low Priority Threads 

Remark : 

Atomic operations are a fast and relatively easy alternative 
to mutexes. They do not suffer from the deadlock. 
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Producer & Consumer : Critical Directive   

 Producer thread generates task and inserts it into a task-

queue.  

 The  consume thread extracts tasks from the queue and 

executes them one at a time.  

  There is concurrent access to the task-queue, these 

accesses must be serialized using critical blocks. 

 The tasks of inserting and extracting from the task-

queue must be serialized.  

 Define your own “insert_into_queue”  and 

“extract_from_queue” from queue (Note that queue full 

& queue empty conditions must be explicitly handled) 
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Producer & 

Consumer ; 

Critical 

Directive   

#pragma omp parallel sections  
{ 

 #pragma parallel section 

  { 

   /*producer thread */ 

   tasks =  produce_task();          

   #pragma omp critical (task_queue);  

     { 

     insert_into_queue(task);  

     } 

  } 

#pragma parallel section 

  { 

   /*Consumer thread */ 

   tasks =  produce_task();          

   #pragma omp critical (task_queue); 

     { 

     task = extract_from_queue(task);  

     } 

     consume_task(task); 

  } 

} 
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 Critical Section directive is a direct application of the 

corresponding mutex function in Pthreads    

  Reduce the size of the critical section in Pthreads/OpenMP 

to get better performance ( Remember that critical section 

represents serialization  points in the program) 

 Critical section consists simply of an update to a single 

memory location. 

 Safeguard : Define Structured Block I.e. no jumps are 

permitted into or out of the block.  This leads to the threads 

wait indefinitely. 

Producer & Consumer : Critical Directive   
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 While execute the for loop across the threads 

cumlative_sum[] can be computed after 

cumaltive_sum[I-1]  has been computed  

 #pragma omp ordered  

 Structured block   

OpenMP  Prog. : Synchronization   

  In-Order : The ordered Directive  

 Example : Execute on all the Threads  

 cumlative_sum[I]= 

         cumulative_sum[I-1]+list [I]  
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OpenMP  Prog. : Synchronization   

  In-Order : The ordered Directive : Example :To compute 

the cumulative sum of i numbers of a list, we can add the 

current number to the cumulative sum of i-1 nos. of the list.  

cumalative_sum[0] = list[0];  

#pragma omp parallel for private(I)  \       

 shared (cumulative_sum, list, n) ordered 

for (i=1; i < n; i++) 

{ 

   /* Other processing on list[I] if needed  */  

    

   #pragma omp ordered;   

     { 

     cumlative_sum[i] = cumulative_sum[i-1]+list[i]; 

     } 

} 
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OpenMP :Data Handling in OpenMP  

  Data Handling in OpenMP   

 One of the Critical factors influencing program 

performance is the manipulation of data by threads.  

 How effectively we can use data classes such as 
private,shared,firstprivate,& lastprivate 

Other data Classes 

 The threadprivate and copy in Directives   

  #pragma omp threadprivate(variable_list)  

 
Source : Reference : [4], [6], [14],[17], ]22], [28] 
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OpenMP :Data Handling in OpenMP  

 Following Heuristics to guide the process 

 If a thread initializes and uses a variable such as loop 
index ---- specify data as private  

 If a thread repeatedly reads variable that has been 
initialized earlier ---- specify data as  firstprivate  

 If multiple threads manipulate a single piece of data, 

one must explore ways of breaking these manipulations 
into local operations – use   reduction  clause 

  If multiple threads manipulate different parts of a large 

data structure, the programmer should explore ways of 

breaking it into smaller data structures and making them 
private to the thread manipulating them.   
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Performance  depends on input workload : 

 Increasing clients and contention 

•  Number of clients vs Ratio of Time to Completion 

  Performance depends on a good locking strategy 

• No locks at all;One lock for the entire data base; 
One lock for each account in the data base 

  Performance depends on the type of work threads do 

• Percentage of Thread I/O vs CPU and Ratio of 
Time to    Completion 

  Performance due to Loop Scheduling and Partitioning  

Performance issues-Synchronization Overhead 
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Overheads of OpenMP 

Construct       Cost 

parallel        1.5 

Barrier        1 

Schedule (Static)      1 

Schedule (guided)     6 

schedule (dynamic)    50 

ordered        0.5 

Single         1 

atomic         0.5 

Critical        0.5 

Lock\Unlock       0.5 

Time in Microseconds 
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Performance & Tuning : Issues 

 Coverage &  Granularity  

 – No sufficient parallel work 

 Load balance 

 – Improper distribution of parallel work 

 Synchronization & Locality 

-  Excessive use of global data, contention for the same    

   synchronization object 

 Performance depends on a good locking strategy 

- No locks at all;One lock for the entire data base; One lock for   

  each account in the data base 

Performance due to Loop Scheduling and Partitioning  
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Performance & Tuning Examples 

Coverage &  Granularity : No sufficient parallel work 

Prime Number calculation :  

Range [ 1-1000] 

 #pragma omp parallel for  
 for (number =3 ; number < Maxnumber  ; number += 2 ) 
 { 
      if (is_prime(number))   { 
# pragma omp critical  

 { 
                              Primearray[ Count ] = number; 
                              Count=Count+1; 
            } 
   }  
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Performance & Tuning Examples 

Typical Call-graph tree in openMP libraries 
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Range 

  

Time Taken in serial computation 

No. of threads : 4 

Time Taken in parallel computation 
by 4 threads 

Time Taken parallel computation 
by 2 threads 

No. of threads :  2 

Performance & Tuning Examples 

Coverage &  Granularity : No sufficient parallel work 

Prime Number calculation :                                          Range [ 1-1000] 
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Performance & Tuning Examples 

Synchronization Issues : Performance depends on the good locking 
scheme 
 
Example : Find Sum of an Array Elements using Critical/Reduction 

#pragma omp parallel for 
 for (i = 0; i < array_size; i++)  
 { 
              #pragma omp critical 
                sum = sum + Array[i]; 
    
} /* End of parallel region */ 

#pragma omp parallel for reduction(+ : sum)  
  for (i = 0; i < array_size; i++)  
  { 
                sum = sum + Array[i]; 
    
   } /* End of parallel region */ 

a) OpenMP Critical Directive b) OpenMP Reduction Clause 
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Critical Section: 
Time : 0.28 sec 

Reduction Clause 
Time : 0.003 sec 

Performance & Tuning Examples 

Synchronization Issues : Performance depends on the good 
locking scheme 
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How do your threads spend their time ? 

 Profiling a program is a good step toward 
identifying its performance bottlenecks (CPU 
Utilization, waiting for locks and I/O completion 
 

 Do the threads spend most of their time blocked, 
waiting for their threads to release locks ? 
 

 Are they runnable for most of their time but not 
actually running because other threads are 
monopolizing the available CPUs ? 
 

 Are they spending most of their time waiting on the 
completion of I/O requests ? 

Performance issues-Synchronization Overhead 
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Explicit Threads versus OpenMP Based Prog.  

 An Artifact of Explicit threading is that data exchange is 

more apparent. This helps in alleviating some of the 

overheads from data movement, false sharing, and 

contention.  

 Explicit threading also provides a richer API in the form  of 

condition  waits.  

 Locks of different types, and increased flexibility for building 

composite synchronization operations   

  Data-race conditions due to output dependencies 

  Managing Shared and Private Data – OpenMP shared, 

private, and default clauses)  

Source : Reference : [4], [6], [14],[17], ]22], [28] 
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Explicit Threads versus OpenMP Based Prog.  

 OpenMP provides a layer on top of naïve threads to 

facilities a variety of thread-related tasks.    
 

  Using Directives provided by OpenMP, a programmer is 

get rid of  the task of initializing attribute objects, setting up 

arguments to threads, partitioning iteration spaces etc…. 

(This may be useful when the underlying problem has a 

static and /or regular task graph. 
 

 The overheads associated with automated generation of 

threaded code from directives have been shown to be 

minimal in the context of a variety of applications.  
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Explicit Threads versus OpenMP Based Prog.  

 Compiler support on Multi-Cores play an important role 
 

 Issues related to OpenMP performance on Multi cores 

need to be addressed.   
 

 Inter-operability of OpenMP/Pthreads on Multi-Cores  

require attention  -from performance point of view  
 

 Performance evaluation and use of tools and Mathematical 

libraries play an important role. 
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 Simple to use OpenMP on Shared Memory machines 

 Different OpenMP Constructs  on Parallel Regions; Work 

sharing; Data Environment ; Synchronization; Runtime 

functions and environment variables have been discussed 

 Example programs using different OpenMP Pragmas for 

SPMD and Non-SPMD programs 

 OpenMP programming models are covered. 

 OpenMP Synchronization Constructs  

 Using  OpenMP Constructs. 

Conclusions  

Shared Memory Programming :The OpenMP Standard 
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 Thank You  
   Any questions ? 


