
Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 1 C-DAC hyPACK-2013

Lecture Topic:

Multi-Core Processors : Shared Memory Prog:

OpenMP Part-III

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators
Power-Aware Computing – Performance of

Applications Kernels

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 2 C-DAC hyPACK-2013

Basic Strategies

 Identify the time consuming code sections

 Add OpenMP directive to parallelize most time

 consuming loops

 #pragma omp

 If a parallelized loop does not perform well

 check the following

 Parallel overhead

 Small loop

 Coverage & Granularity

 Load balance

 Synchronization & Locality

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 3 C-DAC hyPACK-2013

 OpenMP : Use of Different OpenMP Pragmas

 OpenMP Constructs – Synchronization

Work sharing - Minimizing Threading Overhead

Runtime functions/environment variables

 Example programs using different OpenMP Pragmas

 Key factors That impact Performance and

Performance Tuning Methodology

Lecture Outline :

Advance Features of OpenMP

Source : Reference : [4], [6], [14],[17],]22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 4 C-DAC hyPACK-2013

Example Program using different OpenMP Pragma

 Example 1 : OpenMP Parallel & work-share directive

 Matrix-Matrix Multiplication

 Example 2 : OpenMP Data scope Clause “threadprivate”
clause

 Example 3 : OpenMP synchronization construct

 Prime number calculation

 Producer Consumer : Synchronization Issues

 Example 4 : Performance tuning

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 5 C-DAC hyPACK-2013

OpenMP Prog. : Parallel & Work-share Directive

Implementation of Matrix into Matrix Multiplication : dim = 128

and the number of threads = 4

for(i=0; i < dim; i++){

 for(j=0; j < dim; k++){

 c(i,j) = 0;

 for(k=0; k < dim; k++){

 c(i,j) += a(i,k)*b(k,j);

 }

 }

}

Loop Carried Independence : Challenges in Threading a Loop
Source : Reference : [4]

Example 1 : Matrix- Matrix Multiplication (Outer loop parallelize)

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 6 C-DAC hyPACK-2013

Implementation of Matrix into Matrix Multiplication : Static

Scheduling of loops in matrix Multiplication

dim = 128 and the number of threads = 4

#pragma omp parallel for default(private) \

shared(a,b,c,dim) num_threads(4)\

schedule(static)

for(i=0; i < dim; i++){

 for(j=0; j < dim; k++){

 c(i,j) = 0;

 for(k=0; k < dim; k++){

 c(i,j) += a(i,k)*b(k,j);

 }

 }

}

OpenMP Prog. : Parallel & Work-share Directive

Example 1 : Matrix- Matrix Multiplication (Outer loop parallel)

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 7 C-DAC hyPACK-2013

Nesting parallel loops in matrix Multiplication

#pragma omp parallel for default(private) \

shared(a,b,c,dim) num_threads(2)

for (i=0; i < dim; i++) {

 #pragma omp parallel for default(private) \

shared(a,b,c,dim) num_threads(2)
 for(j=0; j < dim; j++){

 c(i,j) = 0;
 #pragma omp parallel for default(private)\

shared(a,b,c,dim) num_threads(2)
 for(k=0; k < dim; k++){

 c(i,j) += a(i,k)*b(k,j);

 }

 }

}

Source : Reference : [4], [6]

OpenMP Prog. : Parallel & Work-share Directive

Example 1 : Matrix- Matrix Multiplication (Inner loop parallel)

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 8 C-DAC hyPACK-2013

In-Order : The ordered Directive : Example :To compute the

cumulative sum of i numbers of a list, we can add the current

number to the cumulative sum of i-1 nos. of the list.

cumalative_sum[0] = list[0];

#pragma omp parallel for private(I) \

 shared (cumulative_sum, list, n) ordered

for (i=1; i < n; i++)

{

 /* Other processing on list[I] if needed */

 #pragma omp ordered;

 {

 cumlative_sum[i] = cumulative_sum[i-1]+list[i];

 }

}

OpenMP Prog. : Example : Inner loop parallelize

Source : Reference : [4], [6]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 9 C-DAC hyPACK-2013

OpenMP Prog. : Example : Pie Value

Description : Method is based on generating random numbers

in a unit length square and counting the number of points that

fall within the largest circle inscribed in the square.

Area of the Circle (πr2) = π/4

Area of Square = 1 X1

 The fraction of random points that fall in

the circle should approach to π/4

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 10 C-DAC hyPACK-2013

OpenMP Prog. : Example : Pie Value

1. Assign fixed number of points to each

thread.

2. Each thread generates random points

and keeps track of the number of points

that land in circle locality.

3. After all threads finish execution, their

counts are combined to computer the

value of π (by calculating the fraction

over all threads and multiplying by 4)

º

º
º

º
º

º
º

Source : Reference : [4], [6]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 11 C-DAC hyPACK-2013

OpenMP Prog. : Example : Pie Value

 Threaded progam to compute PI value
#pragma omp parallel default(private) \

shared(npoints) reduction(+:sum)

num_threads(8)

{

 num_threads = omp_get_num_threads();

 sample_points_per_thread=npoints/num_threads;

 sum = 0.0;

 for(i=0; i<sample_points_per_thread; i++){

 rand_no_x=(double)rand_r(&seed))/double((2<<14-1);
 rand_no_y=(double)rand_r(&seed))/double((2<<14-1);

 if((rand_no_x–0.5)*rand_no_x–0.5) +
 (rand_no_y–0.5)*rand_no_y–0.5)) < 0.25

 sum++;

 }
}

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 12 C-DAC hyPACK-2013

OpenMP Prog. : Example : Pie Value

 Threaded progam to compute PI value
#pragma omp parallel default(private) \

shared(npoints) reduction(+:sum)

num_threads(8)

{

 sum = 0.0;

 #pragma omp for

 for(i=0; i < npoints; i++){

 rand_no_x=(double)rand_r(&seed))/double((2<<14-1);
 rand_no_y=(double)rand_r(&seed))/double((2<<14-1);

 if((rand_no_x–0.5)*rand_no_x–0.5) +

 (rand_no_y–0.5)*rand_no_y–0.5)) < 0.25
 sum++;

 }
}

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 13 C-DAC hyPACK-2013

OpenMP Directives : Synchronization Constructs

THREAD 1 :

Increment (x)

{

X= x+1

}

THREAD 1:

10 LOAD A, (x address)

20 ADD A, 1

30 STORE A, x address)

THREAD 1 :

Increment (x)

{

X= x+1

}

THREAD 1:

10 LOAD A, (x address)

20 ADD A, 1

30 STORE A, x address

Consider a simple example where two threads on two

different processors are both trying to increment a

variable x at the same time (Assume x is initially 0) :

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 14 C-DAC hyPACK-2013

 Atomic is a special case of a critical section that can be
used for certain simple statements.

 It applies only to the update of a memory location (the
update of X in the following example)

C$OMP PARALLEL PRIVATE(B)

 B = DOIT(I)

C$OMP ATOMIC

 X = X + B

C$OMP END PARALLEL

OpenMP : Synchronization
Contd…

Source : Reference : [4], [6], [14],[17],]22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 15 C-DAC hyPACK-2013

 The master construct denotes a structured block that
is only executed by the master thread. The other
threads just skip it (no synchronization is implied).

#pragma omp parallel private (tmp)

{

 do_many_things();

#pragma omp master

 { exchange_boundaries(); }

#pragma barrier

 do_many_other_things();

}

OpenMP : Synchronization
Contd…

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 16 C-DAC hyPACK-2013

 for (number =3 ; number < Maxnumber ; number += 2)
 {
 if (is_prime(number)) {

 Primearray[Count] = number;
 Count=Count+1;
 }
 }

Activity 1: Analysis (Serial Run)

 OpenMP Synchronization construct

Example 3 : Prime Number calculation

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 17 C-DAC hyPACK-2013

Activity 1: Analysis (Serial Run)
Prime no. found

664578

 OpenMP Synchronization construct

Example 3 : Prime Number calculation

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 18 C-DAC hyPACK-2013

 #pragma omp parallel for
 for (number =3 ; number < Maxnumber ; number += 2)
 {
 if (is_prime(number)) {

 Primearray[Count] = number;
 Count=Count+1;
 }
 }

Activity 2 : Design (Parallel Run)

Insert OpenMP parallel for directive

 OpenMP Synchronization construct

Example 3 : Prime Number calculation

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 19 C-DAC hyPACK-2013

Activity 2 : Design (Parallel Run)

Prime count is different
in serial & parallel run

 OpenMP Synchronization construct

Example 3 : Prime Number calculation

Is this threaded implementation is right ?

No, we are Getting the different result from the serial
computation?

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 20 C-DAC hyPACK-2013

 #pragma omp parallel for
 for (number =3 ; number < Maxnumber ; number += 2)
 {
 if (is_prime(number)) {

 Primearray[Count] = number;

 Count = Count + 1;
 }
 }

Activity 3: Debugging

Synchronization :
Data Race

 OpenMP Synchronization construct

Example 3 : Prime Number calculation

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 21 C-DAC hyPACK-2013

Activity 3 : Debugging (Thread Checker)

 OpenMP Synchronization construct

Example 3 : Prime Number calculation

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 22 C-DAC hyPACK-2013

 #pragma omp parallel for
 for (number =3 ; number < Maxnumber ; number += 2)
 {
 if (is_prime(number)) {
 # pragma omp critical
 {
 Primearray[Count] = number;
 Count=Count+1;
 }
 }
 }

Activity 4 : Avoid Data-Race Condition

Insert Synchronization Construct

 OpenMP Synchronization construct

Example 3 : Prime Number calculation

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 23 C-DAC hyPACK-2013

Activity 4 : Parallel Run

 OpenMP Synchronization construct

Example 3 : Prime Number calculation

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 24 C-DAC hyPACK-2013

Producer/Consumer Problem : Synchronizing Issues

Thread 1:

Half the Work

Thread 2:

Half the Work

Data in Memory

Memory

Bottlenecks

Producer

Thread

Consumer

Thread

Data in Memory

Communications

Through Cache

 Producer thread generates tasks and inserts it into a work-

queue.

 The consumer thread extracts tasks from the task-queue

and executes them one at a time.

Source : Reference : [4], [6]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 25 C-DAC hyPACK-2013

 Possibilities & Implementation Issues on Multi cores

 The producer thread must not overwrite the shared

buffer when the previous task has not been picked up

by a consumer thread

 The consumer threads must not pick-up tasks until

there is something present in the shared data

structure.

 Individual consumer threads should pick-up tasks

one at a time.

 Implementation can be done mutexes, condition Variables

Producer/Consumer Problem : Synchronizing Issues

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 26 C-DAC hyPACK-2013

d
Shared Data

T = f (t)
d = f (t) = s(…,ti,tj,tk,tl,…)

Tj

ti

tl

tj

tk

Shared data d depends on synchronization functions of time

Shared Data Synchronization, Where Data d is protected
by a Synchronization Operation

Ti

Synchronization order

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 27 C-DAC hyPACK-2013

new

runnable

new

run method

exits

start

stop

blocked

resume

suspend

notify

wait

not available

wait for lock

I/O complete

block in I/O

sleep

done sleeping

Pthreads:Synchronization & Thread States

 I/O Requests

 Read-Write Locks

 Available CPU

 Release Locks

 Critical Sections

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 28 C-DAC hyPACK-2013

Thread 1

transfer

Thread 2 Thread 1 Thread 2

transfer

transfer

transfer

Unsynchronized Unsynchronized

Too little / too much

synchronization

 In-Correct

Results

Performance –

Slow done the

results

Comparison of unsynchronized / synchronized threads

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 29 C-DAC hyPACK-2013

Synchronization

Atomicity Control

Data

Barrier Mutual Exclusion

Semaphore

and Lock

Producer-

Consumer
Pool.

Queue

Pthreads : Various types of synchronization

 Use of Scheduling techniques as means of
Synchronization is not encouraged. – Thread Scheduling
Policy, High Priority & Low Priority Threads

Remark :

Atomic operations are a fast and relatively easy alternative
to mutexes. They do not suffer from the deadlock.

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 30 C-DAC hyPACK-2013

Producer & Consumer : Critical Directive

 Producer thread generates task and inserts it into a task-

queue.

 The consume thread extracts tasks from the queue and

executes them one at a time.

 There is concurrent access to the task-queue, these

accesses must be serialized using critical blocks.

 The tasks of inserting and extracting from the task-

queue must be serialized.

 Define your own “insert_into_queue” and

“extract_from_queue” from queue (Note that queue full

& queue empty conditions must be explicitly handled)

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 31 C-DAC hyPACK-2013

Producer &

Consumer ;

Critical

Directive

#pragma omp parallel sections
{

 #pragma parallel section

 {

 /*producer thread */

 tasks = produce_task();

 #pragma omp critical (task_queue);

 {

 insert_into_queue(task);

 }

 }

#pragma parallel section

 {

 /*Consumer thread */

 tasks = produce_task();

 #pragma omp critical (task_queue);

 {

 task = extract_from_queue(task);

 }

 consume_task(task);

 }

}

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 32 C-DAC hyPACK-2013

 Critical Section directive is a direct application of the

corresponding mutex function in Pthreads

 Reduce the size of the critical section in Pthreads/OpenMP

to get better performance (Remember that critical section

represents serialization points in the program)

 Critical section consists simply of an update to a single

memory location.

 Safeguard : Define Structured Block I.e. no jumps are

permitted into or out of the block. This leads to the threads

wait indefinitely.

Producer & Consumer : Critical Directive

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 33 C-DAC hyPACK-2013

 While execute the for loop across the threads

cumlative_sum[] can be computed after

cumaltive_sum[I-1] has been computed

 #pragma omp ordered

 Structured block

OpenMP Prog. : Synchronization

 In-Order : The ordered Directive

 Example : Execute on all the Threads

 cumlative_sum[I]=

 cumulative_sum[I-1]+list [I]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 34 C-DAC hyPACK-2013

OpenMP Prog. : Synchronization

 In-Order : The ordered Directive : Example :To compute

the cumulative sum of i numbers of a list, we can add the

current number to the cumulative sum of i-1 nos. of the list.

cumalative_sum[0] = list[0];

#pragma omp parallel for private(I) \

 shared (cumulative_sum, list, n) ordered

for (i=1; i < n; i++)

{

 /* Other processing on list[I] if needed */

 #pragma omp ordered;

 {

 cumlative_sum[i] = cumulative_sum[i-1]+list[i];

 }

}

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 35 C-DAC hyPACK-2013

OpenMP :Data Handling in OpenMP

 Data Handling in OpenMP

 One of the Critical factors influencing program

performance is the manipulation of data by threads.

 How effectively we can use data classes such as
private,shared,firstprivate,& lastprivate

Other data Classes

 The threadprivate and copy in Directives

 #pragma omp threadprivate(variable_list)

Source : Reference : [4], [6], [14],[17],]22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 36 C-DAC hyPACK-2013

OpenMP :Data Handling in OpenMP

 Following Heuristics to guide the process

 If a thread initializes and uses a variable such as loop
index ---- specify data as private

 If a thread repeatedly reads variable that has been
initialized earlier ---- specify data as firstprivate

 If multiple threads manipulate a single piece of data,

one must explore ways of breaking these manipulations
into local operations – use reduction clause

 If multiple threads manipulate different parts of a large

data structure, the programmer should explore ways of

breaking it into smaller data structures and making them
private to the thread manipulating them.

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 37 C-DAC hyPACK-2013

Performance depends on input workload :

 Increasing clients and contention

• Number of clients vs Ratio of Time to Completion

 Performance depends on a good locking strategy

• No locks at all;One lock for the entire data base;
One lock for each account in the data base

 Performance depends on the type of work threads do

• Percentage of Thread I/O vs CPU and Ratio of
Time to Completion

 Performance due to Loop Scheduling and Partitioning

Performance issues-Synchronization Overhead

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 38 C-DAC hyPACK-2013

Overheads of OpenMP

Construct Cost

parallel 1.5

Barrier 1

Schedule (Static) 1

Schedule (guided) 6

schedule (dynamic) 50

ordered 0.5

Single 1

atomic 0.5

Critical 0.5

Lock\Unlock 0.5

Time in Microseconds

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 39 C-DAC hyPACK-2013

Performance & Tuning : Issues

 Coverage & Granularity

 – No sufficient parallel work

 Load balance

 – Improper distribution of parallel work

 Synchronization & Locality

- Excessive use of global data, contention for the same

 synchronization object

 Performance depends on a good locking strategy

- No locks at all;One lock for the entire data base; One lock for

 each account in the data base

Performance due to Loop Scheduling and Partitioning

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 40 C-DAC hyPACK-2013

Performance & Tuning Examples

Coverage & Granularity : No sufficient parallel work

Prime Number calculation :

Range [1-1000]

 #pragma omp parallel for
 for (number =3 ; number < Maxnumber ; number += 2)
 {
 if (is_prime(number)) {
pragma omp critical

 {
 Primearray[Count] = number;
 Count=Count+1;
 }
 }

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 41 C-DAC hyPACK-2013

Performance & Tuning Examples

Typical Call-graph tree in openMP libraries

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 42 C-DAC hyPACK-2013

Range

Time Taken in serial computation

No. of threads : 4

Time Taken in parallel computation
by 4 threads

Time Taken parallel computation
by 2 threads

No. of threads : 2

Performance & Tuning Examples

Coverage & Granularity : No sufficient parallel work

Prime Number calculation : Range [1-1000]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 43 C-DAC hyPACK-2013

Performance & Tuning Examples

Synchronization Issues : Performance depends on the good locking
scheme

Example : Find Sum of an Array Elements using Critical/Reduction

#pragma omp parallel for
 for (i = 0; i < array_size; i++)
 {
 #pragma omp critical
 sum = sum + Array[i];

} /* End of parallel region */

#pragma omp parallel for reduction(+ : sum)
 for (i = 0; i < array_size; i++)
 {
 sum = sum + Array[i];

 } /* End of parallel region */

a) OpenMP Critical Directive b) OpenMP Reduction Clause

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 44 C-DAC hyPACK-2013

Critical Section:
Time : 0.28 sec

Reduction Clause
Time : 0.003 sec

Performance & Tuning Examples

Synchronization Issues : Performance depends on the good
locking scheme

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 45 C-DAC hyPACK-2013

How do your threads spend their time ?

 Profiling a program is a good step toward
identifying its performance bottlenecks (CPU
Utilization, waiting for locks and I/O completion

 Do the threads spend most of their time blocked,
waiting for their threads to release locks ?

 Are they runnable for most of their time but not
actually running because other threads are
monopolizing the available CPUs ?

 Are they spending most of their time waiting on the
completion of I/O requests ?

Performance issues-Synchronization Overhead

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 46 C-DAC hyPACK-2013

Explicit Threads versus OpenMP Based Prog.

 An Artifact of Explicit threading is that data exchange is

more apparent. This helps in alleviating some of the

overheads from data movement, false sharing, and

contention.

 Explicit threading also provides a richer API in the form of

condition waits.

 Locks of different types, and increased flexibility for building

composite synchronization operations

 Data-race conditions due to output dependencies

 Managing Shared and Private Data – OpenMP shared,

private, and default clauses)

Source : Reference : [4], [6], [14],[17],]22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 47 C-DAC hyPACK-2013

Explicit Threads versus OpenMP Based Prog.

 OpenMP provides a layer on top of naïve threads to

facilities a variety of thread-related tasks.

 Using Directives provided by OpenMP, a programmer is

get rid of the task of initializing attribute objects, setting up

arguments to threads, partitioning iteration spaces etc….

(This may be useful when the underlying problem has a

static and /or regular task graph.

 The overheads associated with automated generation of

threaded code from directives have been shown to be

minimal in the context of a variety of applications.

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 48 C-DAC hyPACK-2013

Explicit Threads versus OpenMP Based Prog.

 Compiler support on Multi-Cores play an important role

 Issues related to OpenMP performance on Multi cores

need to be addressed.

 Inter-operability of OpenMP/Pthreads on Multi-Cores

require attention -from performance point of view

 Performance evaluation and use of tools and Mathematical

libraries play an important role.

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 49 C-DAC hyPACK-2013

 Simple to use OpenMP on Shared Memory machines

 Different OpenMP Constructs on Parallel Regions; Work

sharing; Data Environment ; Synchronization; Runtime

functions and environment variables have been discussed

 Example programs using different OpenMP Pragmas for

SPMD and Non-SPMD programs

 OpenMP programming models are covered.

 OpenMP Synchronization Constructs

 Using OpenMP Constructs.

Conclusions

Shared Memory Programming :The OpenMP Standard

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 50 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 51 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog. OpenMP Part-III 52 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP web
site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars Technica,
October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.openmp.org/

Multi-Core Processors : Shared Memory Programming: Pthreads Part-I 53 C-DAC hyPACK-2013

 Thank You
 Any questions ?

