
Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 1 C-DAC hyPACK-2013

Lecture Topic:

Multi-Core Processors : Shared Memory Prog:

OpenMP Part-II

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013
(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators

Power-Aware Computing – Performance of

Applications Kernels

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 2 C-DAC hyPACK-2013

 # pragma omp parallel [Clause list]

 /* Structured block */

 Conditional Parallelization :The Clause If(Scalar

expression) determines whether the parallel construct in

creation of threads. Only one if clause can be used with a

parallel directive.

 Degree of Concurrency : The Clause num_threads

(integer expression) specifies the number of threads

that are created by the parallel directive

 Data Handling : The Clause private (variable

list) indicates hat the set of variable specified is local to

each thread ~ i.e each thread ha sits own copy of each

variable in the list.

OpenMP Prog. : Parallel Regions

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 3 C-DAC hyPACK-2013

 OpenMP Constructs Parallel Regions

Data Environment

Work sharing

Runtime functions/environment variables

 Example programs using different OpenMP Pragmas

 Key factors That impact Performance and

Performance Tuning Methodology

Lecture Outline :

Advance Features of OpenMP

Source : Reference : [4], [6], [14],[17],]22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 4 C-DAC hyPACK-2013

OpenMP’s constructs

Data Environment

Work Sharing

Runtime functions/environment variables

 OpenMP is basically the same between Fortran
and C/C++

OpenMP : Contents

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 5 C-DAC hyPACK-2013

 One can selectively change storage attributes constructs using the
following clauses*

SHARED

PRIVATE

FIRSTPRIVATE

THREADPRIVATE

 The value of a private inside a parallel loop can be transmitted to a

global value outside the loop with:

LASTPRIVATE

 The default status can be modified with:

DEFAULT (PRIVATE | SHARED | NONE)

All the clauses on this page

only apply to the lexical extent

of the OpenMP construct.

All data clauses apply to parallel regions and work sharing constructs except

“shared” which only applies to parallel regions.

OpenMP : Data Environment - Changing storage attributes

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 6 C-DAC hyPACK-2013

 Makes global data private to a thread

 Fortran: COMMON blocks

 C: File scope and static variables

 Different from making them PRIVATE

 with PRIVATE global variables are masked.

 THREADPRIVATE preserves global scope within each
thread

 Threadprivate variables can be initialized using COPY-IN
CLAUSE

OpenMP : Thread private

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 7 C-DAC hyPACK-2013

Consider two different parallel regions in a code.

Because of the threadprivate

construct, each thread executing

these routines has its own copy

 of the common block /buf/.

OpenMP : Thread private Example

#include <omp.h>

 int a, b, i, tid; float x;

#pragma omp threadprivate(a, x)

main () {

/* Explicitly turn off dynamic threads */

omp_set_dynamic(0);

 printf("1st Parallel Region:\n");

#pragma omp parallel private(b,tid) {

 tid = omp_get_thread_num();

a = tid;

b = tid;

 x = 1.1 * tid +1.0;

printf("Thread %d: a,b,x= %d %d %f\n",tid,a,b,x); } /* end of parallel section */

printf("Master thread doing serial work here\n");

printf("2nd Parallel Region:\n");

 #pragma omp parallel private(tid) {

 tid = omp_get_thread_num();

printf("Thread %d: a,b,x= %d %d %f\n",tid,a,b,x); }

 /* end of parallel section */ }

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 8 C-DAC hyPACK-2013

 1st Parallel Region:

 Thread 0: a,b,x= 0 0 1.000000

 Thread 2: a,b,x= 2 2 3.200000

 Thread 3: a,b,x= 3 3 4.300000

 Thread 1: a,b,x= 1 1 2.100000

 Master thread doing serial work here

 2nd Parallel Region:

 Thread 0: a,b,x= 0 0 1.000000

 Thread 3: a,b,x= 3 0 4.300000

 Thread 1: a,b,x= 1 0 2.100000

 Thread 2: a,b,x= 2 0 3.200000

Output of the ThreadPrivate example code

OpenMP : Thread private Example

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 9 C-DAC hyPACK-2013

OpenMP’s constructs fall into 5 categories:

Data Environment

Work sharing

Runtime functions/environment variables

 OpenMP is basically the same between Fortran
and C/C++

OpenMP : Constructs

Contd…

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 10 C-DAC hyPACK-2013

OpenMP defines the following work-sharing constructs.

 for directive

 sections directive

 single directive

OpenMP : Work-sharing Construct

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 11 C-DAC hyPACK-2013

Format of for directive

 A sequence of for directive

 private (variable list)

firstprivate (Variable List)

Lastprivate

Reduction, Schedule,

nowait, & ordered

OpenMP Prog. : Parallel Regions

Source : Reference : [4], [6], [14],[17],]22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 12 C-DAC hyPACK-2013

 The schedule clause effects how loop iterations are

mapped onto threads

schedule(static [,chunk])
 Deal-out blocks of iterations of size “chunk” to each thread.

schedule(dynamic[,chunk])
 Each thread grabs “chunk” iterations off a queue until all

iterations have been handled.

OpenMP : For/do construct – The schedule clause

Source : Reference : [4], [6], [14],[17],]22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 13 C-DAC hyPACK-2013

 The schedule clause effects how loop iterations are

mapped onto threads

schedule(guided[,chunk])

 Threads dynamically grab blocks of iterations. The
size of the block starts large and shrinks down to
size “chunk” as the calculation proceeds.

schedule(runtime)

 Schedule and chunk size taken from the

OMP_SCHEDULE environment variable.

OpenMP : For/do construct – The schedule clause

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 14 C-DAC hyPACK-2013

Schedule Clause When To Use

STATIC Predictable and similar work per

iteration

DYNAMIC Unpredictable, highly variable

work per iteration

GUIDED Special case of dynamic to

reduce scheduling overhead

RUNTIME Uses the OMP_SCHEDULE

environment variable at runtime

to specify for usage.

* Third party trademarks and names are the property of their respective owner.

OpenMP* API : The schedule clause

Source : Reference : [4], [6], [14],[17],]22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 15 C-DAC hyPACK-2013

Example : DO / for Directive

 Simple vector-add program

 Arrays A, B, C, and variable N will be shared by all

threads.

 Variable I will be private to each thread; each thread will

have its own unique copy.

 The iterations of the loop will be distributed dynamically

in CHUNK sized pieces.

 Threads will not synchronize upon completing their

individual pieces of work (NOWAIT).

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 16 C-DAC hyPACK-2013

C / C++ – for Directive Example

#include <omp.h>

#define CHUNK 100

#define N 1000

main ()

{

int i, n, chunk;

float a[N], b[N], c[N];

/* Some initializations */

for (i=0; i < N; i++)

 a[i] = b[i] = i * 1.0;

n = N; chunk = CHUNK;

#pragma omp parallel shared(a,b,c,n,chunk) private(i)

 {

 #pragma omp for schedule(dynamic,chunk) nowait

 for (i=0; i < n; i++)

 c[i] = a[i] + b[i];

 } /* end of parallel section */

}

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 17 C-DAC hyPACK-2013

OpenMP’s constructs fall into 5 categories:

Work sharing

Data Environment

Runtime functions/environment variables

 OpenMP is basically the same between Fortran
and C/C++

OpenMP : Constructs
Contd…

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 18 C-DAC hyPACK-2013

OpenMP Parallel Programming

 Environment Variables in OpenMP

 OMP_NUM_THREADS

 OMP_DYNAMIC

 OMP_NESTED

 OMP_SCHEDULE

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 19 C-DAC hyPACK-2013

Control how “omp for schedule(RUNTIME)” loop iterations
are scheduled.

OMP_SCHEDULE “schedule[, chunk_size]”

Set the default number of threads to use.

OMP_NUM_THREADS int_literal

Can the program use a different number of threads in
each parallel region?

OMP_DYNAMIC TRUE || FALSE

Do you want nested parallel regions to create new teams
of threads, or do you want them to be serialized?

OMP_NESTED TRUE || FALSE

OpenMP : Environment Variables

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 20 C-DAC hyPACK-2013

 Environment variables are not propagated, so you may
need to explicitly set the requested number of threads
with OMP_NUM_THREADS().

 OpenMP is:

A great way to write parallel code for shared memory
machines.

A very simple approach to parallel programming.

Your gateway to special, painful errors (race
conditions).

 OpenMP impacts clusters:

Mixing MPI and OpenMP.

Distributed shared memory.

OpenMP : Environment Variables and Summary

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 21 C-DAC hyPACK-2013

Producer/Consumer Problem : Synchronizing Issues

Thread 1:

Half the Work

Thread 2:

Half the Work

Data in Memory

Memory

Bottlenecks

Producer

Thread

Consumer

Thread

Data in Memory

Communications

Through Cache

 Producer thread generates tasks and inserts it into a work-

queue.

 The consumer thread extracts tasks from the task-queue

and executes them one at a time.

Source : Reference : [4], [6], [14],[17],]22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 22 C-DAC hyPACK-2013

 Possibilities & Implementation Issues on Multi cores

 The producer thread must not overwrite the shared

buffer when the previous task has not been picked up

by a consumer thread

 The consumer threads must not pick-up tasks until

there is something present in the shared data

structure.

 Individual consumer threads should pick-up tasks

one at a time.

 Implementation can be done mutexes, condition Variables

Producer/Consumer Problem : Synchronizing Issues

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 23 C-DAC hyPACK-2013

Producer & Consumer : Critical Directive

 Producer thread generates task and inserts it into a task-

queue.

 The consume thread extracts tasks from the queue and

executes them one at a time.

 There is concurrent access to the task-queue, these

accesses must be serialized using critical blocks.

 The tasks of inserting and extracting from the task-

queue must be serialized.

 Define your own “insert_into_queue” and

“extract_from_queue” from queue (Note that queue full

& queue empty conditions must be explicitly handled)

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 24 C-DAC hyPACK-2013

Producer &

Consumer ;

Critical

Directive

#pragma omp parallel sections
{

 #pragma parallel section

 {

 /*producer thread */

 tasks = produce_task();

 #pragma omp critical (task_queue);

 {

 insert_into_queue(task);

 }

 }

#pragma parallel section

 {

 /*Consumer thread */

 tasks = produce_task();

 #pragma omp critical (task_queue);

 {

 task = extract_from_queue(task);

 }

 consume_task(task);

 }

}

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 25 C-DAC hyPACK-2013

 Critical Section directive is a direct application of the

corresponding mutex function in Pthreads

 Reduce the size of the critical section in Pthreads/OpenMP

to get better performance (Remember that critical section

represents serialization points in the program)

 Critical section consists simply of an update to a single

memory location.

 Safeguard : Define Structured Block I.e. no jumps are

permitted into or out of the block. This leads to the threads

wait indefinitely.

Producer & Consumer : Critical Directive

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 26 C-DAC hyPACK-2013

 Simple to use OpenMP on Shared Memory machines

 Different OpenMP Constructs on Parallel Regions;

Work sharing; Data Environment ; Synchronization;

Runtime functions and environment variables have

been discussed

 Example programs using different OpenMP Pragmas

for SPMD and Non-SPMD programs

 Mixing of MPI and OpenMP and thread Safety issues

are important for producing correct results

Conclusions

Shared Memory Programming :The OpenMP Standard

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 27 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 28 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog. OpenMP Part-II 29 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : Shared Memory Programming: Pthreads Part-I 30 C-DAC hyPACK-2013

 Thank You
 Any questions ?

