
Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 1 C-DAC hyPACK-2013

Lecture Topic:

Multi-Core Processors : Shared Memory Prog:

OpenMP Part-I

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013
(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators

Power-Aware Computing – Performance of

Applications Kernels

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 2 C-DAC hyPACK-2013

Lecture outline

Introduction to OpenMP

OpenMP Programming Model

OpenMP Constructs

 Directives

Runtime Libraries

 Environment variables

Explicit Parallelism :Shared Memory

Programming: The OpenMP Standard

Source : Reference : [4], [6], [14],[17], [22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 3 C-DAC hyPACK-2013

OpenMP is an API for writing Multithreaded Applications

 It is a specification for

 Portable : Makes it easy to crate multi-threaded programs in C,C++

and Fortran.

 Standardizes the SMP practice

OpenMP: Introduction

Directives

Runtime

library

routines

Environment

variables

Source : Reference : [4], [6], [14],[17], [22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 4 C-DAC hyPACK-2013

Why OpenMP ?

 Relatively easy to do parallelization for small parts of an
application at a time.

 Impact on code quantity (e.g., amount of additional code
required) and code quality (e.g., readability of parallel code)

 Feasibility of scaling an application to a large number of
processes.

 Readability of the parallel code is high

 Availability of application development and debugging
environment

 Standard and portable API

OpenMP: Introduction

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 5 C-DAC hyPACK-2013

Commonly Encountered Questions While Threading

 Application ?

 Where to thread ?

 How long would it take to thread?

 How much re-design / efforts is required?

 Is it worth threading the selected region ?

 What should the expected speedup be?

Will the performance meet expectations?

 Will it scale if the more number of processor added?

 Which threading model is it?

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 6 C-DAC hyPACK-2013

History

 First standard ANSI X3H5 in 1994

 OpenMP Standard SPECs started in 1997

 OpenMP Architecture review board

 Compaq, HP, IBM, Sun Micro System, Intel Corp, Kuck &

Associate Inc (KAI), SGI, US Dept. of Energy, ASCI program.

OpenMP: Introduction

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 7 C-DAC hyPACK-2013

Supporters

Hardware vendors

 Intel, HP, SGI, IBM, SUN, Cray, AMD

 Software tools vendors

 pathscale, Intel PGI, SGI, Sun, Absoft

OpenMP: Introduction

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 8 C-DAC hyPACK-2013

OpenMP: Programming Model

Shared Memory Model

processor processor processor processor

Memory

 Processes synchronize and communicate with each other through

shared variables

 Supports incremental parallelization.

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 9 C-DAC hyPACK-2013

Fork – Join parallelism

 OpenMP uses fork and join model for

parallel execution

 OpenMP programs begin with single

process: master thread.

 FORK : Master thread creates a team of

parallel threads

 JOIN: When the team threads complete

the statements in parallel region, they

synchronize and terminate leaving

master thread.

 Parallelism is added incrementally

OpenMP: Programming Model

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 10 C-DAC hyPACK-2013

 Threads based parallelization

 Open MP is based on the existence of multiple threads in the

shared memory programming paradigm

 Explicit parallelization

 It is an explicit programming model, and offers full control

over parallelization to the programmer

 Compiler directive based

 All of OpenMP parallelization is supported through the use of

compiler directives

 Nested parallelism support

 The API support placement of parallel construct inside other

parallel construct

OpenMP: Programming Model

Source : Reference : [4], [6], [14],[17], [22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 11 C-DAC hyPACK-2013

 Dynamic threads

 The API provides dynamic altering of number of threads (Depends on

the implementation)

OpenMP: Programming Model

How do threads interact?

 OpenMP is shared memory model.

 Threads communicate by sharing variables

 Unintended sharing of data can lead to race conditions:

 Race condition : when the program’s outcome changes as the threads

are scheduled differently

 To control race conditions: Use synchronization to protect data conflicts

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 12 C-DAC hyPACK-2013

OpenMP : Fortran Directives Format

sentinel
directive-

name
[clause ...]

All Fortran OpenMP

directives must begin with a

sentinel. The accepted

sentinels depend upon the

type of Fortran source.

Possible sentinels are:

!$OMP

C$OMP

*$OMP

A valid OpenMP

directive. Must

appear after the

sentinel and

before any

clauses.

Optional. Clauses can be in

any order, and repeated as

necessary unless otherwise

restricted.

Format

Example

!$OMP PARALLEL SHARED(ALPHA) PRIVATE(BETA)

Source : Reference : [4], [6], [14],[17], [22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 13 C-DAC hyPACK-2013

OpenMP : C/C++ Directives Format

directive-name [clause ...]

Required for all

OpenMP C/C++

directives

#pragma omp

A valid OpenMP

directive. Must

appear after the

pragma and before

any clauses.

Optional. Clauses

can be in any

order, and

repeated as

necessary unless

otherwise

restricted.

Format

Example

#pragma omp parallel shared(alpha), private(beta)

Required.

Proceeds the

structured

block which is

enclosed by

this directive.

newline sentinel

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 14 C-DAC hyPACK-2013

OpenMP : C/C++ Directives Format

Format : Compiler Directive

sentinel directive-name clause

#pragma omp parallel shared(alpha), private(beta)

 C/C++

sentinel directive-name clause

!$OMP directive [clause, …]

!C$OMP directive [clause, …]

!*$OMP directive [clause, …]

 Fortran

Ex.

Ex.

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 15 C-DAC hyPACK-2013

OpenMP : C/C++ General Code Structure

include <omp.h>

main() {

int var1, var2, var3;

serial code

……
Beginning of parallel region, fork a team of threads.

Specify variable scoping

#pragma omp parallel private (var1, var2), shared(var3)

{

 Parallel region executed by all threads

 ………

 ……….

 All threads join master thread and disband

}

Resume Serial code

}

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 16 C-DAC hyPACK-2013

OpenMP : C/C++ General Code Structure

include <omp.h>

main() {

int var1, var2, var3; Create thread here for this parallel region serial

code ……

Beginning of parallel region, fork a team of threads.

#pragma omp parallel for private (var1, var2)

{

Parallel region executed by all threads

 ………

 ……….

 All threads join master thread and disband

} /* End of the Parallel region */

Resume Serial code

 }

Defined by the for loop OpenMP

Create Parallel Region

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 17 C-DAC hyPACK-2013

 OpenMP : FORTRAN General Code Structure

 PROGRAM HELLO

 INTEGER VAR1, VAR2, VAR3

 Serial code

 …….

 …….

 Beginning of parallel region, fork a team of threads.

 Specify variable scoping

!$OMP PARALLEL PRIVATE (VAR1, VAR2), SHARED(VAR3)

 Parallel region executed by all threads

 ………

 ……….

 All threads join master thread and disband

!$OMP END PARALLEL

 …….

 Resume Serial code

 END

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 18 C-DAC hyPACK-2013

 OpenMP is usually used to parallelize loops:

 Find your most time consuming loops.

 Split them up between threads.

void main()

{

 double Res[1000];

 for(int i=0;i<1000;i++) {

 do_huge_comp(Res[i]);

 }

}

#include “omp.h”

void main()

{

 double Res[1000];

#pragma omp parallel for

 for(int i=0;i<1000;i++) {

 do_huge_comp(Res[i]);

 }

}

Split-up this loop between

multiple threads

Parallel Program Sequential Program

OpenMP : How is OpenMP typically used? (C/C++)

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 19 C-DAC hyPACK-2013

 program example

 double precision Res(1000)

 do I=1,1000

 call huge_comp(Res(I))

 end do

 end

 program example

 double precision Res(1000)

C$OMP PARALLEL DO

 do I=1,1000

 call huge_comp(Res(I))

 end do

 end

Parallel Program
Sequential Program

 OpenMP is usually used to parallelize loops:

Find your most time consuming loops.

Split them up between threads.

Split-up this loop between

multiple threads

OpenMP : How is OpenMP typically used? (Fortran)

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 20 C-DAC hyPACK-2013

OpenMP : Constructs

Main categories of OpenMP’s constructs:

 Directives

 Parallel Regions

 Work-sharing

 Data Environment

 Synchronization

 Runtime library functions

 Execution Environment Functions

 Lock functions

 Timing routines

 Environment variables

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 23 C-DAC hyPACK-2013

OpenMP : ‘PARALLEL’ Region Construct

A Parallel Region is a block of code executed by

all threads simultaneously

 The master thread always has thread ID 0

 Thread adjustment (if enabled) is only done

 before entering a parallel region

 Parallel regions can be nested, but support

 for this is implementation dependent

All thread perform

identical task

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 24 C-DAC hyPACK-2013

Example

OpenMP : Parallel Regions

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

 int ID = omp_thread_num();

 pooh(ID,A);

}

Printf(“all done\n”);

OpenMP : PARALLEL Region Construct

Each thread

redundantly

executes

the code

within the

structured

block

Runtime function

to request a

certain number of

threads

Runtime

function

returning a

thread ID

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 25 C-DAC hyPACK-2013

Each thread executes the

same code reduntantly.

double A[1000];

omp_set_num_threads(4);

pooh(0,A) pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

OpenMP : PARALLEL Region Construct

a single copy of A is

shared between all

threads

Threads wait here for all threads to

finish before proceeding (I.e a barrier)

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 26 C-DAC hyPACK-2013

It distributes the execution of the associated statement

among the members of the team that encounter it

 Work sharing construct do not launch new threads

 There is no barrier upon entry to work-sharing construct.

 There is an implied barrier at the end of a worksharing construct

Restrictions

 Must be enclosed in the parallel region for parallel execution

 Must be encountered by all the members of the team or none

of them

OpenMP : Work-sharing Construct

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 27 C-DAC hyPACK-2013

OpenMP defines the following work-sharing constructs.

 for directive

 sections directive

 single directive

OpenMP : Work-sharing Construct

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 28 C-DAC hyPACK-2013

OpenMP is usually used to parallelize loops:

Find your most time consuming loops.

Split them up between threads.

void main()

{

 double Res[1000];

 for(int i=0;i<1000;i++) {

do_huge_comp(Res[i]);

 }

}

#include “omp.h”

void main()

{

 double Res[1000];

#pragma omp parallel for

 for(int i=0;i<1000;i++) {

do_huge_comp(Res[i]);

 }

}

Split-up this loop between

multiple threads

Parallel Program Sequential Program

OpenMP : Work-sharing construct 'for'

Fork

Join

do/for loop

master

master

team

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 29 C-DAC hyPACK-2013

OpenMP : Work-sharing construct 'for'

Thread 0

1-250

 Thread 1

251-500
Thread 2

501-750

Thread 3
751-1000

Iterations

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 30 C-DAC hyPACK-2013

for directive identifies the iterative work-sharing construct.

#pragma omp for [clause[[,]clause]…] new-line

for-loop

Clause is one of the following:

 private(variable list)

 firstprivate (variable list)

 lastprivate (variable list)

 reduction (variable list)

 ordered , nowait

OpenMP : Work-sharing Construct

for directive

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 31 C-DAC hyPACK-2013

The “for” Work-Sharing construct splits up loop iterations among

the threads in a team

 #pragma omp parallel

 #pragma omp for

 for (I=0;I<N;I++) {

 NEAT_STUFF(I);

 }

By default, there is a

barrier at the end of

the “omp for”.

for directive

OpenMP : Work-sharing Construct

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 32 C-DAC hyPACK-2013

sections directive gives different

structured blocks to each thread.

#pragma omp parallel

#pragma omp sections {

#pragma omp section

 x_calculation(); // thread 1 work

#pragma omp section

 y_calculation(); // thread 2 work

……

}

sections directive

OpenMP : Work-sharing Construct

master thread

Fork

Join

SECTIONS team

master thread

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 33 C-DAC hyPACK-2013

This identifies that the associated structured block is to

be executed by only one thread in the team (It can be

any thread including master thread).

#pragma omp single [clause[[,] clause] ...] new-line

structured-block

Example : !$omp single

 call read_array(in, len)

 !$omp end single

OpenMP : Work-sharing Construct

single directive

team

Fork

Join

single

master thread

master thread

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 34 C-DAC hyPACK-2013

Default Storage attributes

Shared Memory programming model:

Most variables are shared by default

Global variables and SHARED among threads

Fortran : COMMON blocks, SAVE variables, MODULE variables.

C: File scope variables, static

But not everything is shared…

Stack variables in sub-programs called from parallel regions are

PRIVATE

Automatic variables within a statement block are PRIVATE.

OpenMP : Data Environment

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 35 C-DAC hyPACK-2013

Example : Storage attributes
 program sort

 common /input/ A(10)

 integer index(10)

 call input

C$OMP PARALLEL

 call work(index)

C$OMP END PARALLEL

 print *, index(1)

 subroutine work

 common /input/ A(10)

 real temp(10)

temp temp temp

A, index

A, index

A, index are shared by all

threads

temp is local to each thread

OpenMP : Data Environment

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 36 C-DAC hyPACK-2013

Changing the storage attributes

One can selectively change storage attributes constructs using the

following clauses*

SHARED declares variables to be shared among all

threads in the team

PRIVATE declares variables to be private to each thread.

FIRSTPRIVATE performs initialization of private variables

LASTPRIVATE performs finalization of private variables

REDUCTION performs a reduction on the variables subject to

given operator.

 The default status can be modified with:

 DEFAULT (PRIVATE | SHARED)

OpenMP : Data Environment

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 37 C-DAC hyPACK-2013

private clause

Creates a local copy of variable for each thread.

 The value is un-initialized

 Private copy is not storage associated with the original

program sample

 IS = 0

!$OMP PARALLEL DO PRIVATE(IS)

 DO J=1,1000

 IS = IS + J

 ENDDO

 print *, IS

OpenMP : Data Environment

IS is undefined at this point

IS was not

initialized

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 38 C-DAC hyPACK-2013

First private initializes each thread’s copy of a private
variable to the value of the master copy.

Last private writes back to the master’s copy the value of
private copy that executed the Sequentially last iteration.

program closer

 IS = 0

C$OMP PARALLEL DO
FIRSTPRIVATE(IS) LASTPRIVATE(IS)

 DO J=1,1000

 IS = IS + J

 ENDDO

 print *, IS

OpenMP : Data Environment

Each thread gets its own
IS with an initial value of 0

IS is defined as its value at the

last iteration (i.e. for J=1000)

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 39 C-DAC hyPACK-2013

Example : Firstprivate & lastprivate

int x;

x = 0;

#pragma omp parallel for firstprivate(x)
for (i = 0; i < 10000; i++) {

x = x + i;
}

printf(“x is %d\n”, x);

Oops! The value x is undefined!
Need lastprivate(x) to copy value back out to master

Initialise x to zero

Each thread gets its own is
with an initial value of 0

Print out value of x

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 40 C-DAC hyPACK-2013

Example :

Default Clause

 itotal = 1000

#pragma omp parallel private(np, each)

{

 np = omp_get_num_threads()

 each = itotal/np

}

 itotal = 1000

#pragma omp parallel Default(private) shared(itotal)

{

 np = omp_get_num_threads()

 each = itotal/np

 }

These two

codes are

equivalent

OpenMP : Data Environment

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 41 C-DAC hyPACK-2013

Default clause

This clause is used for changing the default status of the variables.

 default (private)

 Each variable in static extent of the parallel region is made

private as if specified in a private clause

 default (shared)

 Each variable in static extent of the parallel region is made

shared as if specified in a shared clause

 default (none)

 no default for variables in static extent.

OpenMP : Data Environment

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 42 C-DAC hyPACK-2013

Example :

Default Clause

 itotal = 1000

C$OMP PARALLEL PRIVATE(np, each)

 np = omp_get_num_threads()

 each = itotal/np

C$OMP END PARALLEL

 itotal = 1000

C$OMP PARALLEL DEFAULT(PRIVATE)

SHARED(itotal)

 np = omp_get_num_threads()

 each = itotal/np

 C$OMP END PARALLEL

These two

codes are

equivalent

OpenMP : Data Environment

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 43 C-DAC hyPACK-2013

Reduction

 Another clause that effects the way variables are shared

 reduction(op:list)

 The variables in “list” must be shared in the enclosing parallel

region.

 Inside a parallel or a work sharing construct:

 A local copy of each list variable is made and initialized

depending on the “op” (e.g 0 for “+”)

 Pair wise “op” is updated on the local value

 Local copies are reduced into a single global copy at the end

of the construct

OpenMP : Data Environment

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 44 C-DAC hyPACK-2013

OpenMP Clauses

Example :

Reduction

#include <omp.h>

#define NUM_THREADS 2

void main() {

 int I;

 double ZZ, func(), res = 0.0;

 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for reduction(+;res) private(ZZ)

 for(I=0;I<1000;I++)}

 ZZ=func(I);

 res = res + ZZ;

 }

}

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 45 C-DAC hyPACK-2013

OpenMP: Synchronization

OpenMP has the following constructs support synchronization

Atomic

Critical section

Barrier

Flush

Ordered

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 46 C-DAC hyPACK-2013

OpenMP: Synchronization constructs

Some of the OpenMP synchronization constructs

 Single

 Master

Atomic

Critical section

Barrier

Ordered

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 47 C-DAC hyPACK-2013

Usually, there is a barrier at the end of the region

 SINGLE and MASTER Construct

Single Processor

region

Thread wait in

barrier
time

T1

T2

T3

T4

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 48 C-DAC hyPACK-2013

Only one thread in a team executes the code enclosed

Only the master thread executes the code block

#pragma omp single [clause[[,] clause] ...]

{

 <code-block>

}

#pragma omp master

{

 <code-block>

}

There is no implied

barrier on the

entry & exit

 SINGLE and MASTER Construct

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 49 C-DAC hyPACK-2013

Only one thread at a time can enter a critical section

If sum is a shared variable, this loop can not run in parallel

for (i=0; i < N; i++){

 sum += a[i];

 }

We can use a critical region for this:

for (i=0; i < N; i++){

 one at a time can proceed

 sum += a[i];

 next in line, please

}

 Synchronization : Critical Section and Atomic

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 50 C-DAC hyPACK-2013

 Useful to avoid a race condition, or to perform I/O

 Be aware that your parallel computation may be serialized

Critical region

time

 Synchronization : Critical Section and Atomic

T1

T2

T3

T4

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 51 C-DAC hyPACK-2013

All threads execute the code, but only one at a time:

#pragma omp critical [(name)]
{<code-block>}

#pragma omp atomic
 <statement>

There is no implied
barrier on entry or exit

This is a lightweight,
special form of a
critical section

 Synchronization : Critical Section and Atomic

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 52 C-DAC hyPACK-2013

Only one thread at a time can enter a critical section

#pragma omp parallel for

for (i=0; i < N; i++){

#pragma omp critical

 sum = sum + a[i];

}

 Synchronization : Critical Section and Atomic

one thread at a time

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 53 C-DAC hyPACK-2013

Suppose we run each of these two loops in parallel over i:

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

This may give us a wrong answer ?

 Synchronization construct: Barrier

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 54 C-DAC hyPACK-2013

We need to have updated all of a[] first, before using a[]

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

wait !

barrier
for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

All threads wait at the barrier point and only continue
 when all threads have reached the barrier point

 Synchronization construct : Barrier

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 55 C-DAC hyPACK-2013

Barrier region

Thread wait in

barrier
time

idle

idle

idle

Each thread waits until all others have reached this point:

#pragma omp barrier

 Synchronization Construct :Barrier

T1

T2

T3

T4

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 56 C-DAC hyPACK-2013

OpenMP: Synchronization

 Only one thread at a time can enter a critical section

 cur_max = MINUS_INFINITY

 !$omp parallel do

 do I = 1 , n

 !omp critical

 if (a(I) .gt. Cur_max) then

 cur_max = a(I)

 endif

 !omp end critical

 endif

 enddo

Critical Section

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 57 C-DAC hyPACK-2013

OpenMP: Synchronization

#pragma omp parallel shared (A, B, C)

private(d)

{

 id = omp_get_thread_num();

 A[id]=big_calc1(id);

#pragma omp barrier

#pragma omp for

 for(I=0;I<N;I++){ C[I]=big_calc3(I,A);}

#pragma omp for nowait

 for(I=0;I<N;I++){ B[I]=big_calc2(C,I);}

 A[id]=big_calc3(id);

}

Barrier : Each thread

waits until all threads

arrive

Implicit barrier at the end

of a for work-sharing

construct

No implicit barrier due to

nowait

Implicit barrier at the end

of a parallel region

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 58 C-DAC hyPACK-2013

OpenMP: Synchronization

 The ordered construct enforces the sequential

order for a block.

#pragma omp parallel private(tmp)

#pragma omp for ordered

 for (I=0;I<N;I++){

 tmp = NEAT_STUFF(I);

#pragma ordered

 res = consum(tmp);

 }

Ordered

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 59 C-DAC hyPACK-2013

OpenMP: Synchronization

 The FLUSH construct denotes a sequence point where a

thread tries to create a consistent view of memory.

 All memory operations (both reads and writes) defined

prior to the sequence point must complete.

 All memory operations (both reads and writes) defined

after the sequence point must follow the flush.

 Variables in registers or write buffers must be updated

in memory.

 Arguments to flush specify which variables are flushed.

No arguments specifies that all thread visible variables

are flushed.

flush

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 60 C-DAC hyPACK-2013

OpenMP: Library Routines

Lock routines

 omp_init_lock(), omp_set_lock(),

 omp_destroy_lock(),

 omp_unset_lock(),

 omp_test_lock()

Runtime environment routines:

 Modify/Check the number of threads

 omp_set_num_threads(),

 omp_get_num_threads(),

 omp_get_thread_num(),

 omp_get_max_threads()

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 61 C-DAC hyPACK-2013

OpenMP: Library Routines

How many processors in the system?

–omp_num_procs()

 Turn on/off nesting and dynamic mode

omp_set_nested(),

omp_get_nested(),
omp_set_dynamic(),

omp_get_dynamic()

 Runtime environment routines

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 62 C-DAC hyPACK-2013

OpenMP: Library Routines

 omp_lock_tlck;

 omp_init_lock(&lck);

#pragma omp parallel private(tmp)

{

 id = omp_get_thread_num();

 tmp= do_lots_of_work(id);

 omp_set_lock(&lck);

 printf(“%d %d”, id, tmp);

 omp_unset_lock(&lck);

}

Protect resources with locks

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 63 C-DAC hyPACK-2013

OpenMP: Library Routines

#include <omp.h>

Void main()

{

 omp_set_dynamic(0);

 omp_set_num_threads(4);

#pragma omp parallel {

 Int id=omp_get_thread_num();

 do_lots_of-stuff(id); }

}

 To fix the number of threads used in a program,

first turn off dynamic mode and then set the

number of threads.

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 64 C-DAC hyPACK-2013

Variables Value Description

OMP_NUM_THREADS 4 Specify the no. of

threads

OMP_DYNAMIC TRUE or

FALSE

Enable/disable

dynamic adj of

threads

OMP_NESTED TRUE or

FALSE

Enable/disable

nested parallelism

 Environment Variables

OpenMP :Environment Variables

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 65 C-DAC hyPACK-2013

#pragma omp parallel if (n>limit) default(none) \
 shared(n,a,b,c,x,y,z) private(f,i,scale)
{
 f = 1.0;
#pragma omp for
for (i=0; i<n; i++) parallel loop
 z[i] = x[i] + y[i]; (work will be distributed)

#pragma omp for
for(i=0; i<n; i++) parallel loop
 a[i] = b[i] + c[i]; (work will be distributed)

#pragma omp barrier synchronization

 scale = sum(a,0,n) + sum(z,0,n) + f;

} /*-- End of parallel region --*/

Statement is executed
 by all threads

Statement is executed
 by all threads

Parallel
region

A more elaborate example

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 66 C-DAC hyPACK-2013

#include<stdio.h>

#include<omp.h>

main() {

#pragma omp parallel

{

 printf(“hello world from thread %d of

 %d\n”, omp_get_thread_num(),

 omp_get_num_threads());

}

}Bu

Compilation & Execution of OpenMP programs

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 67 C-DAC hyPACK-2013

Compilation & Execution of OpenMP programs

Compilation :

$ cc –o <objectFileName> <programName> <omp-compiler-flag>

Ex.

$gcc –o omp-hello-world omp-hello-world.c -fopenmp

Setting the Number of Threads :

 Environment Variables :

 $ export OMP_NUM_THREADS= <No. of threads>

 Environment variable can be overridden by the

 programmer :

 omp_set_num_threads(int n)

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 68 C-DAC hyPACK-2013

Sample Output

From a Dual Socket Quad Core machine:

hello world from thread 0 of 8

hello world from thread 2 of 8

hello world from thread 3 of 8

hello world from thread 7 of 8

hello world from thread 6 of 8

hello world from thread 1 of 8

hello world from thread 4 of 8

hello world from thread 5 of 8

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 69 C-DAC hyPACK-2013

What should the expected speedup be?

Will the performance meet expectations?

 Will it scale if the more number of processor added?

 Which threading model is it?

Commonly Encountered Questions While Threading

 Application ?

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 70 C-DAC hyPACK-2013

Commonly Encountered Questions

While Threading Application ?

 Where to thread ?

 thread the more time consuming section of code like loops

 How long would it take to thread?

 Very minimum time just need to use some directives/library

 routine

 How much re-design / efforts is required?

 Very less

 Is it worth threading the selected region ?

 Appears to have minimal dependencies

 Consuming over 90% of run time

Analysis

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 71 C-DAC hyPACK-2013

 Features and advantages of OpenMP is discussed.

 OpenMP programming models are covered.

 Parallelization using OpenMP is explained.

 Various OpenMP Constructs are discussed with

examples.

OpenMP :Conclusions

Source : Reference : [4], [6], [14],[17], [22], [28]

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 72 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 73 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Shared Memory Prog. OpenMP Part-I 74 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir,
and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP web
site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars Technica,
October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : Shared Memory Programming: Pthreads Part-I 75 C-DAC hyPACK-2013

 Thank You
 Any questions ?

