
Multi-Core Processors : Intel Tools Part-I 1 C-DAC hyPACK-2013

Lecture Topic :
Multi-Core Processors : Intel Tools

(Thread Checker, Profiler, Performance Analyzer).

Hybrid Computing – Co-Processors/Accelerators

Power-aware Computing – Performance of

Applications Kernels

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013
(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Multi-Core Processors : Intel Tools Part-I 2 C-DAC hyPACK-2013

 Moving from Multiple processor on single box (SMP) Multiple

Core on Single Chip.

 Two, four or even eight processor cores on the same die are fast

becoming commonplace.

 Moving to a multi-core world means applications will have to be

written in a different manner.

 Multicore architectures involve multi-processing, and to take

advantage of that, parallel programming is almost compulsury.

 The lack of parallel-programming tools and expertise is

threatening the progress of multi-core architectures.

Introduction

Multi-Core Processors : Intel Tools Part-I 3 C-DAC hyPACK-2013

 Insufficient parallel work

 Synchronization overhead

 Contention

 Load imbalance

 Task granularity

 Memory bandwidth / false sharing

Cause of Poor Scalability

Multi-Core Processors : Intel Tools Part-I 4 C-DAC hyPACK-2013

 Fully utilize available cores

 Identify which synchronization objects are

contended and whose waiting actually affect

performance

 Highlight workload imbalance

 Pinpoints issues regarding performance

bottleneck in the source code

Road Map To Better Performance

Multi-Core Processors : Intel Tools Part-I 5 C-DAC hyPACK-2013

 Intel Thread Checker.

 Intel Thread Profiler.

 Intel VTune Performance Analyzer.

Intel Multicore Tools

Multi-Core Processors : Intel Tools Part-I 6 C-DAC hyPACK-2013

• VTune Performance Analyzer

• Intel Performance Libraries

• OpenMP (Intel OpenMP)

• Threading Building Block (TBB)

• Intel Thread Checker

• Intel Thread Checker

• Intel Debugger

• Intel Thread Profiler

• Intel VTune Performance Analyzer

• Intel Thread Checker

Analysis &

Design

Debugging

Tuning

Testing

Performance Improvement Cycle

Multi-Core Processors : Intel Tools Part-I 7 C-DAC hyPACK-2013

 Detect the potential errors.

 Filter out specific types of Diagnostics

 Identify critical source locations

 Get tips to improve the robustness

Intel® Thread Checker detects data races, deadlocks, stalls, and other

threading issues. It can detect the potential for these errors even if the

error does not occur during an analysis session.

Intel Thread Checker : Features

Multi-Core Processors : Intel Tools Part-I 8 C-DAC hyPACK-2013

 Pinpoint the function, context, line, variable, and call stack in

the source code to aid analysis and repair of bugs

 Identify nearly impossible-to-find data races and deadlocks

using an advanced error detection engine. Helps to reduce

untraceable errors.

 Instrumental for effective design of threaded applications

 Errors do not need to actually occur to be detected. Make the

code as more robust

Intel® Thread Checker detects data races, deadlocks, stalls, and other

threading issues. It can detect the potential for these errors even if the

error does not occur during an analysis session.

Intel Thread Checker : Benefits

Multi-Core Processors : Intel Tools Part-I 9 C-DAC hyPACK-2013

#define NTHREADS 4

int globalX = 0; pthread_mutex_t cs;

int main (int argc, char *argv[])

{

 pthread_t h[NTHREADS];

 int rc;

 int i;

 pthread_mutex_init (&cs, 0);

 for (i = 0; i < NTHREADS; i++) {

 rc = pthread_create (&h[i], 0

 , increment, 0);

 }

 for (i = 0; i < NTHREADS; i++) {

 rc = pthread_join (h[i], 0);

 }

}

void * increment (void *arg)

{

 pthread_mutex_lock (&cs);

 globalX++;

 pthread_mutex_unlock (&cs);

 pthread_mutex_destroy (&cs);

 return 0;

}

Intel Thread Checker : Case Study

Multi-Core Processors : Intel Tools Part-I 10 C-DAC hyPACK-2013

Intel Thread Checker : Output

Multi-Core Processors : Intel Tools Part-I 11 C-DAC hyPACK-2013

#define NTHREADS 4

int globalX = 0; pthread_mutex_t cs;

int main (int argc, char *argv[])

{

 pthread_t h[NTHREADS];

 int rc;

 int i;

 pthread_mutex_init (&cs, 0);

 for (i = 0; i < NTHREADS; i++) {

 rc = pthread_create (&h[i], 0,
increment, 0);

 }

 for (i = 0; i < NTHREADS; i++) {

 rc = pthread_join (h[i], 0);

 }

}

Initializing mutex with

in main thread

Declearing mutex at

global location

Intel Thread Checker : Whats Gone Wrong

Multi-Core Processors : Intel Tools Part-I 12 C-DAC hyPACK-2013

#define NTHREADS 4

int globalX = 0; pthread_mutex_t cs;

void * increment (void *arg)

{

 pthread_mutex_lock (&cs);

 globalX++;

 pthread_mutex_unlock (&cs);

 pthread_mutex_destroy (&cs);

 return 0;

}

Destroying mutex within thread

after completion of execution

Intel Thread Checker : Whats Gone Wrong

Multi-Core Processors : Intel Tools Part-I 13 C-DAC hyPACK-2013

 Identify bottlenecks that limit the parallel performance of your

multi threaded application.

 Locate synchronization delays, stalled threads, excessive blocking

time, and ineffective utilization of processors.

 Find the best sections of code to optimize for sequential

performance and for threaded performance.

 Compare scalability across different numbers of processors or

using different threading methods.

Intel® Thread Profiler helps you to improve the performance of

applications threaded with Windows API, OpenMP, or POSIX threads

(Pthreads).

Intel Thread Profiler

Multi-Core Processors : Intel Tools Part-I 14 C-DAC hyPACK-2013

The Profile view (on top) displays a high-level summary of the time spent

on the critical path, decomposed into time categories.

Intel Thread Profiler : Profiler View

Multi-Core Processors : Intel Tools Part-I 15 C-DAC hyPACK-2013

 The Timeline view (on bottom) illustrates the behavior of your program

over time.

Intel Thread Profiler : Time Line View

Multi-Core Processors : Intel Tools Part-I 16 C-DAC hyPACK-2013

In the following case, the majority of time was spent in under

utilized (red) time.

Intel Thread Profiler : Case Study

Multi-Core Processors : Intel Tools Part-I 17 C-DAC hyPACK-2013

The VTune™ Performance Analyzer provides information on the

performance of your code. The VTune analyzer shows you the

performance issues, enabling you to focus your tuning effort and get

the best performance boost in the least amount of time.

 Locate a performance issue

 Revise the code to remove the issue

 Compare the performance of the new code with the initial code

Intel Vtune Performance Analyzer

Multi-Core Processors : Intel Tools Part-I 18 C-DAC hyPACK-2013

Three different wizard is provided to analyze an application using

VTune™ Performance Analyzer

 First Use Wizard

 Sampling wizerd

 Call Graph Wizard

Intel VTune Performance Analyzer

Multi-Core Processors : Intel Tools Part-I 19 C-DAC hyPACK-2013

The first use wizard creates and runs a performance tuning Activity.

After the Activity run is complete, a Summary view displays, showing

the five most active functions in your application.

 The Activity runs the sampling collector

 Collects data on the Clock ticks processor event.

 Calculate percentage of processor time spent in

each module of your application.

VTune : First User Wizard

Multi-Core Processors : Intel Tools Part-I 20 C-DAC hyPACK-2013

First Use Wizard’s output of analyzing Matrix Matrix Multiplication

Code with Posix Thread

VTune : First User Wizard

Multi-Core Processors : Intel Tools Part-I 21 C-DAC hyPACK-2013

The VTune Performance Analyzer's sampling collector collects system-

wide data.

 Sampling data collection is a non-intrusive process.

 Collect sampling data of active processes on your system

 The VTune analyzer is meant to be a statistical sampling

tool and is not meant to sample after every instruction.

VTune : Sampling Wizard

Multi-Core Processors : Intel Tools Part-I 22 C-DAC hyPACK-2013

The VTune(TM) Performance Analyzer's sampling collector collects

system-wide data and display in the following picture.

VTune : Sampling Wizard

Multi-Core Processors : Intel Tools Part-I 23 C-DAC hyPACK-2013

Display Sampling Information for specific process

VTune : Sampling Wizard

Multi-Core Processors : Intel Tools Part-I 24 C-DAC hyPACK-2013

Display Sampling information of specific modules of specific thread

VTune : Sampling Wizard

Multi-Core Processors : Intel Tools Part-I 25 C-DAC hyPACK-2013

Display Sampling information of specific function of specific

module of specific thread.

VTune : Sampling Wizard

Multi-Core Processors : Intel Tools Part-I 26 C-DAC hyPACK-2013

VTune : Case Study : Cont…

Multi-Core Processors : Intel Tools Part-I 27 C-DAC hyPACK-2013

VTune : Case Study : Cont…

Multi-Core Processors : Intel Tools Part-I 28 C-DAC hyPACK-2013

VTune : Case Study : Cont…

Multi-Core Processors : Intel Tools Part-I 29 C-DAC hyPACK-2013

VTune : Case Study : Cont…

Multi-Core Processors : Intel Tools Part-I 30 C-DAC hyPACK-2013

VTune : Case Study : Cont…

Multi-Core Processors : Intel Tools Part-I 31 C-DAC hyPACK-2013

VTune : Case Study : Cont…

Multi-Core Processors : Intel Tools Part-I 32 C-DAC hyPACK-2013

VTune : Case Study : So What is Solution

Multi-Core Processors : Intel Tools Part-I 33 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Intel Tools Part-I 34 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill International
Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed Progrmaming,
Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Intel Tools Part-I 35 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir,
and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP web
site, URL : http://www.openmp.org/

29. Stokes, Jon 2002, Introduction to Multithreading, Super-threading and Hyperthreading; Ars
Technica, The Art of Technology, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture, Intel (2000)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : Shared Memory Programming: Pthreads Part-I 36 C-DAC hyPACK-2013

 Thank You
 Any questions ?

