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 Moving from Multiple processor on single box (SMP) Multiple 

Core on Single Chip. 
 

 Two, four or even eight processor cores on the same die are fast 

becoming commonplace. 
 

 Moving to a multi-core world means applications will have to be 

written in a different manner. 
 

 Multicore architectures involve multi-processing, and to take 

advantage of that, parallel programming is almost compulsury. 
 

 The lack of parallel-programming tools and expertise is 

threatening the progress of multi-core architectures. 

Introduction   
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 Insufficient parallel work 

 

 Synchronization overhead 

 

 Contention 

 

 Load imbalance 

 

 Task granularity 

 

 Memory bandwidth / false sharing 

Cause of Poor Scalability  
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 Fully utilize available cores 

 

 Identify which synchronization objects are 

contended and whose waiting actually affect 

performance 

 

 Highlight workload imbalance 

 

 Pinpoints issues regarding performance 

bottleneck in the source code 

Road Map To Better Performance  
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 Intel Thread Checker. 

 

 

 Intel Thread Profiler. 

 

 

 Intel VTune Performance Analyzer. 

Intel Multicore Tools 
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• VTune Performance Analyzer 

• Intel Performance Libraries 

• OpenMP ( Intel OpenMP ) 

• Threading Building Block (TBB) 

• Intel Thread Checker 

• Intel Thread Checker 

• Intel Debugger 

• Intel Thread Profiler 

• Intel VTune Performance Analyzer 

• Intel Thread Checker 

Analysis & 

Design 

Debugging  

Tuning 

Testing  

Performance Improvement Cycle 



Multi-Core Processors : Intel Tools Part-I  7 C-DAC   hyPACK-2013 

 Detect the potential errors. 

 Filter out specific types of Diagnostics 

 Identify critical source locations 

 Get tips to improve the robustness 

Intel® Thread Checker detects data races, deadlocks, stalls, and other 

threading issues. It can detect the potential for these errors even if the 

error does not occur during an analysis session.  

Intel Thread Checker : Features 
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 Pinpoint the function, context, line, variable, and call stack in 

the source code to aid analysis and repair of bugs 

 

 Identify nearly impossible-to-find data races and deadlocks 

using an advanced error detection engine. Helps to reduce 

untraceable errors. 

 

 Instrumental for effective design of threaded applications 

 

 Errors do not need to actually occur to be detected. Make the 

code as more robust 

Intel® Thread Checker detects data races, deadlocks, stalls, and other 

threading issues. It can detect the potential for these errors even if the 

error does not occur during an analysis session. 

Intel Thread Checker : Benefits 
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#define   NTHREADS  4 

int   globalX = 0;         pthread_mutex_t cs; 

 

int main (int argc, char *argv[]) 

{ 

    pthread_t h[NTHREADS]; 

    int rc; 

    int i; 

     

    pthread_mutex_init (&cs, 0); 

    for (i = 0; i < NTHREADS; i++)  { 

     rc = pthread_create (&h[i], 0 

                          , increment, 0); 

    } 

 

    for (i = 0; i < NTHREADS; i++)  { 

        rc = pthread_join (h[i], 0); 

    } 

} 

 

 

void * increment (void *arg) 

{ 

    pthread_mutex_lock (&cs); 

    globalX++; 

    pthread_mutex_unlock (&cs); 

 

    pthread_mutex_destroy (&cs); 

 

    return 0; 

} 

 

 

 

Intel Thread Checker : Case Study 
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Intel Thread Checker : Output 
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#define   NTHREADS  4 

int   globalX = 0;         pthread_mutex_t cs; 

 

int main (int argc, char *argv[]) 

{ 

    pthread_t h[NTHREADS]; 

    int rc; 

    int i; 

     

    pthread_mutex_init (&cs, 0); 

    for (i = 0; i < NTHREADS; i++)  { 

        rc = pthread_create (&h[i], 0, 
increment, 0); 

    } 

 

    for (i = 0; i < NTHREADS; i++)  { 

        rc = pthread_join (h[i], 0); 

    } 

} 

Initializing mutex with 

in main thread 

Declearing mutex at 

global location  

Intel Thread Checker : Whats Gone Wrong 
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#define   NTHREADS  4 

int   globalX = 0;         pthread_mutex_t cs; 

 

void * increment (void *arg) 

{ 

    pthread_mutex_lock (&cs); 

    globalX++; 

    pthread_mutex_unlock (&cs); 

 

    pthread_mutex_destroy (&cs); 

 

    return 0; 

} 

 

 

Destroying mutex within thread 

after completion of execution 

Intel Thread Checker : Whats Gone Wrong 
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 Identify bottlenecks that limit the parallel performance of your 

multi threaded  application. 
 

 Locate synchronization delays, stalled threads, excessive blocking 

time, and ineffective utilization of processors.  
 

 Find the best sections of code to optimize for sequential 

performance and for  threaded performance. 
 

 Compare scalability across different numbers of processors or 

using different threading methods. 

 

Intel® Thread Profiler helps you to improve the performance of 

applications threaded with Windows API, OpenMP, or POSIX threads 

(Pthreads).  

Intel Thread Profiler 
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The Profile view (on top) displays a high-level summary of the time spent 

on the critical path, decomposed into time categories. 

Intel Thread Profiler : Profiler View 
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 The Timeline view (on bottom) illustrates the behavior of your program 

over time. 

Intel Thread Profiler : Time Line View 
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In the following case, the majority of time was spent in under 

utilized (red) time. 

Intel Thread Profiler : Case Study 
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The VTune™ Performance Analyzer provides information on the 

performance of your code. The VTune analyzer shows you the 

performance issues, enabling you to focus your tuning effort and get 

the best performance boost in the least amount of time. 

 Locate a performance issue 

 

 Revise the code to remove the issue 

 

 Compare the performance of the new code with the initial code 

Intel Vtune Performance Analyzer 
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Three different wizard is provided to analyze an application using  

VTune™  Performance Analyzer 

 First Use Wizard  

 

 Sampling wizerd 

 

 Call Graph Wizard 

Intel VTune Performance Analyzer 
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The first use wizard creates and runs a performance tuning Activity.  

After the Activity run is complete, a Summary view displays, showing 

the five most active functions in your application. 

 The Activity runs the sampling collector 

 

 Collects data on the Clock ticks processor event.  

 

 Calculate percentage of processor time spent in 

each module of your application. 

VTune : First User Wizard 



Multi-Core Processors : Intel Tools Part-I  20 C-DAC   hyPACK-2013 

First Use Wizard’s output of analyzing Matrix Matrix Multiplication 

Code with Posix Thread 

VTune : First User Wizard 
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The VTune Performance Analyzer's sampling collector collects system-

wide data. 

 

 Sampling data collection is a non-intrusive process.  

 

 Collect sampling data of active processes on your system 

 

 The VTune analyzer is meant to be a statistical sampling 

tool and is not meant to sample after every instruction. 

VTune : Sampling Wizard 
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The VTune(TM) Performance Analyzer's sampling collector collects 

system-wide data  and display in the following picture. 

VTune : Sampling Wizard 
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Display Sampling Information for specific process 

VTune : Sampling Wizard 
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Display Sampling information of specific modules of specific thread 

VTune : Sampling Wizard 
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Display Sampling information of specific function of specific 

module of specific thread. 

VTune : Sampling Wizard 
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VTune : Case Study : Cont… 
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VTune : Case Study : Cont… 
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VTune : Case Study : Cont… 
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VTune : Case Study : Cont… 
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VTune : Case Study : Cont… 
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VTune : Case Study : Cont… 
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VTune : Case Study : So What is Solution 
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 Thank You  
   Any questions ? 


