
Multi-Core Processors : Architecture- Part-II -Memory Allocators 1 C-DAC hyPACK-2013

Lecture Topic:

Multi-Core Processors : Multi-Core Architecture
Part-II : Memory Allocators

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators
Power-Aware Computing – Performance of

Applications Kernels

Multi-Core Processors : Architecture- Part-II -Memory Allocators 2 C-DAC hyPACK-2013

 Introduction

 Understanding of Memory Allocation on Threads

 Case Studies & Examples

Lecture Outline

Following Topics will be discussed

An Overview of Memory Allocator for

Multithreaded Application

Multi-Core Processors : Architecture- Part-II -Memory Allocators 3 C-DAC hyPACK-2013

Conceptual diagram of

 A dual-core CPU, with

 CPU-local Level 1

caches, and

 Shared, on-chip Level

2 caches

Dual Core Processor

Multi-Core Processors : Architecture- Part-II -Memory Allocators 4 C-DAC hyPACK-2013

Applications are written in C & C++

Shared Memory Multi-processors

 Make intensive use of Dynamic Memory

Applications

Web Servers

Data Base Managers

 news servers

Parallel Scientific Applications

An Overview of Memory Allocator for

Multithreaded Application

Multi-Core Processors : Architecture- Part-II -Memory Allocators 5 C-DAC hyPACK-2013

Industry Standard Servers

SMP and Cluster Platforms

based on Intel/AMD

Single Threaded CPU

Preemptive vs. co-operative

Multitasking

Context, process and Thread

Waste Associated with Threads

An Overview of threading

Time Slicing

I/O Threads

Implementing

Hyper-threading

• Replicated

• Partitioned

• Shared Implementing

Hyper-threading

• Caching & SMT

Source : http://www.intel.com/

http://www.intel.com/

Multi-Core Processors : Architecture- Part-II -Memory Allocators 6 C-DAC hyPACK-2013

 Memory Allocation is often a bottleneck that severely
limits program scalability on multiprocessor systems

 Existing Serial memory allocations do not scale well for
multithreaded applications.

 Concurrent memory allocators do not provide one or
more following features….

• Speed (fast malloc & free)

• Scalability

• False Sharing avoidance (Cache line)

• Low fragmentation (Poor Data Locality, Paging)

• Still some execution block is utilized

 Blowup

An Overview of Memory Allocator for

Multithreaded Application

Multi-Core Processors : Architecture- Part-II -Memory Allocators 7 C-DAC hyPACK-2013

 Achieve Scalable Memory Performance on Shared Memory
Architectures

 Questions should be addresses on Multi Cores

• Per Core “heap” & “global heap”

• Transfer of “heap” from processors to global

 False Sharing : It occurs when multiple processors
share words in the same cache line without actually
sharing data.

 False sharing of heap objects

 The Scheduling of multithreaded programs can cause
them to require much more memory when run on
multiple processors rather than single processor.

Hoard : A Memory allocator

Source : http://www.hoard.org/

http://www.hoard.org/
http://www.hoard.org/

Multi-Core Processors : Architecture- Part-II -Memory Allocators 8 C-DAC hyPACK-2013

 Example :

 Threads in Producer–consumer relationship

• Blow-up mechanism exists ….

• Memory Consumption grows linearly

 Producer thread repeatedly allocates a block of
memory and it gives it to a consumer thread which
frees it.

 If the memory freed by the consumer is unavailable it
the producer, the program consumes more and more
memory as it runs…

 Memory Consumption grows without bound while the
memory required….

Hoard : A Memory allocator

Multi-Core Processors : Architecture- Part-II -Memory Allocators 9 C-DAC hyPACK-2013

 Each thread calls x= malloc(S); …free(s).

 If these threads are serialised the total memory required is s.

For serial – Memory requirement is s

For p threads – memory requirement is ps.

 If they execute on p processors, each call to malloc may run in
parallel, increasing the memory requirement to P*s.

 Hoard can be viewed as an allocator that generally avoids false
sharing & reduce synchronization costs..

 Each thread can access only its heap and global heap.
Designation of heaps : 0 as global heap & heap 1 through p as
the per-processor heaps.

Hoard : A Memory allocator

Source : http://www.hoard.org/

http://www.hoard.org/
http://www.hoard.org/

Multi-Core Processors : Architecture- Part-II -Memory Allocators 10 C-DAC hyPACK-2013

Heap 0 : Global heap

Heap 1

Heap 2

Hoard : A Memory allocator

Heap 3

Heap 4

Processor 1

Processor 2

Processor 3

Processor 4

 Superblocks

 Each superblock has some blocks

(Empty/Partially filled /Fully Filled)

 thread ‘k’ maps to

heap ‘k’

Source : http://www.hoard.org/

http://www.hoard.org/
http://www.hoard.org/

Multi-Core Processors : Architecture- Part-II -Memory Allocators 11 C-DAC hyPACK-2013

Hoard : A Memory allocator

 Allocation and freeing in Hoard Memory Allocator

 Hoard maintains usage statistics for each heap

 The amount of memory allocated by Hoard from

the operating system held in heap i.

 The amount of memory is use (“Live”) in heap “I”

 Hoard allocates memory from the system in chunks as

well as superblocks

 Each superblock is an array of some number of blocks

(objects) and contains a free list of its available blocks

maintained in LIFO order to improve locality.

 All the superblocks are of same size (S), a multiple

of system page size.

Multi-Core Processors : Architecture- Part-II -Memory Allocators 12 C-DAC hyPACK-2013

Hoard : A Memory allocator

 Allocation and freeing in Hoard Memory Allocator
Collision of heap segments to threads by hashing on the LWP id.

 The number of LWP’s – No of Processors

  Initially global heap is empty

 Thread ‘k’ is mapped to heap ‘k’

 Global heap is empty

 Heap 1 has two superblocks (one is partially full &

one is empty)

 Heap 2 has completely full superblock

 Superblock size = S

Multi-Core Processors : Architecture- Part-II -Memory Allocators 13 C-DAC hyPACK-2013

x1

x2
x9

Global heap

Heap 1 Heap 2

t1: x9=malloc(s); t1: free(y4);

Hoard : A Memory allocator

Global heap

 Allocation and freeing in Hoard Memory Allocator
Collision of heap segments to threads by hashing on the LWP id.

 The number of LWP’s I set to No of Processors

y1

y2

y3

y4

x1

x2
x9

Global heap

Heap 1 Heap 2

Global heap

y1

y2

y3

Multi-Core Processors : Architecture- Part-II -Memory Allocators 14 C-DAC hyPACK-2013

x1

x9

Global heap

Heap 1

y1

y2

y3

Heap 2

y4

t2: free(x2);

Global heap

t2: free(x9);

x1

Heap 1

y1

y2

y3

Heap 2

Hoard : A Memory allocator

Source : http://www.hoard.org/

http://www.hoard.org/
http://www.hoard.org/

Multi-Core Processors : Architecture- Part-II -Memory Allocators 15 C-DAC hyPACK-2013

Hoard : A Memory allocator

 Allocation and freeing in Hoard Memory Allocator

 Fragmentation Problems

 Re-cycle completely empty superblocks for re-use.

 Avoid false Sharing

 Memory Allocation and De-allocation Algorithms

Multi-Core Processors : Architecture- Part-II -Memory Allocators 16 C-DAC hyPACK-2013

Hoard : A Memory allocator

 Single Threaded Applications

 Each thread allocates one small object, writes on it a

number of times and then frees it.

 Overheads ignore

 Superblock size = 1024*1024 Bytes.

 Different classes & the number of classes

 Avoid false Sharing

Multi-Core Processors : Architecture- Part-II -Memory Allocators 17 C-DAC hyPACK-2013

Hoard : A Memory allocator

 Multi-threaded Threaded Memory Benchmarks

 Shbench : The large object size – randomly

scattered in the super block

• Represents real program

• One Size Class per Superblock

• Dynamic Storage Allocation

Larson Benchmark: Estimation of workload for server

Speedup, Scalability, and False Sharing avoidance

Multi-Core Processors : Architecture- Part-II -Memory Allocators 18 C-DAC hyPACK-2013

Hoard : A Memory allocator

 Taxonomy of Memory Allocated Algorithms

 Serial Single heap

 Concurrent Single Heap

 Pure Private heaps

 Private heaps with ownership

 Private heaps with thresholds

Multi-Core Processors : Architecture- Part-II -Memory Allocators 19 C-DAC hyPACK-2013

Hoard : A Memory allocator

Taxonomy of Memory Allocated Algorithms :Issues

 Contention for the lock primitives

 Number of size Classes

 Freeing Blocks O(log C)

 Multiple heap Allocation

 Speed, Scalability, false Sharing avoidance and

low fragmentation

Multi-Core Processors : Architecture- Part-II -Memory Allocators 20 C-DAC hyPACK-2013

 An overview of Memory Allocation for Multi-threading

Applications

Conclusions

Multi-Core Processors : Architecture- Part-II -Memory Allocators 21 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Architecture- Part-II -Memory Allocators 22 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Architecture- Part-II -Memory Allocators 23 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : Architecture- Part-II -Memory Allocators 24 C-DAC hyPACK-2013

Thank You
 Any questions ?

