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 Introduction  
 

 Understanding of Memory Allocation  on Threads 
 

 Case Studies & Examples 
 

Lecture Outline  

Following Topics will be discussed 

An Overview of Memory Allocator for 

Multithreaded Application 
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Conceptual diagram of  

 A dual-core CPU, with  

 CPU-local Level 1 

caches, and 

 Shared, on-chip Level 

2 caches 

Dual Core Processor 
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Applications are written in C & C++ 
 

Shared Memory Multi-processors  
 

 Make intensive use of Dynamic Memory 

Applications  

Web Servers  

Data Base Managers 

 news servers 

Parallel Scientific Applications  

An Overview of Memory Allocator for 

Multithreaded Application 
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Industry Standard Servers 

SMP and Cluster Platforms 

based on Intel/AMD  

Single Threaded CPU 

Preemptive vs. co-operative 

Multitasking 

Context, process and Thread 

Waste Associated with Threads 

An Overview of threading  

Time Slicing  

I/O Threads 

Implementing 

Hyper-threading 

• Replicated 

• Partitioned  

• Shared  Implementing 

Hyper-threading 

• Caching & SMT 

Source : http://www.intel.com/ 

http://www.intel.com/
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 Memory Allocation is often a bottleneck that severely 
limits program scalability on multiprocessor systems 
 

 Existing Serial memory allocations do not scale well  for 
multithreaded applications.  

  Concurrent memory allocators do not provide one or 
more following features…. 

• Speed  (fast malloc & free) 

• Scalability 

• False Sharing avoidance (Cache line) 

• Low fragmentation (Poor Data Locality, Paging)  

• Still some execution block is utilized 

 Blowup 

An Overview of Memory Allocator for 

Multithreaded Application 
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 Achieve Scalable Memory Performance on Shared Memory 
Architectures  
 

 Questions should be addresses on Multi Cores  

• Per Core “heap” & “global heap” 

• Transfer of “heap” from processors to global 

  False Sharing : It occurs when multiple processors 
share words in the same cache line without actually 
sharing data. 

 False sharing of heap objects 

 The Scheduling of multithreaded programs can cause 
them to require much more memory when run on 
multiple processors rather than single processor. 

Hoard : A Memory allocator   

Source : http://www.hoard.org/ 

http://www.hoard.org/
http://www.hoard.org/
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 Example :   
 

 Threads in Producer–consumer relationship 

• Blow-up mechanism exists …. 

• Memory Consumption grows linearly 

 Producer thread repeatedly allocates a block of 
memory and it gives it to a consumer thread which 
frees it.  

 If the memory freed by the consumer is unavailable it 
the producer, the program consumes more and more 
memory as it runs… 

 Memory Consumption grows without bound while the 
memory required…. 

 

Hoard : A Memory allocator   
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 Each thread calls  x= malloc(S); …free(s).  

 

 If these threads are serialised the total memory required is s. 

For serial – Memory requirement is s 

For p threads – memory requirement is ps. 

 

 If they execute on p processors, each call to malloc may run in 
parallel, increasing the memory requirement to P*s. 

 

 Hoard can be viewed as an allocator that generally avoids  false 
sharing & reduce synchronization costs.. 

 

 Each thread can access only its heap and global heap. 
Designation of heaps : 0 as global heap & heap 1 through p as 
the per-processor heaps. 

 

Hoard : A Memory allocator   

Source : http://www.hoard.org/ 

http://www.hoard.org/
http://www.hoard.org/
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Heap 0 : Global heap 

Heap 1 

Heap 2 

Hoard : A Memory allocator   

Heap 3 

Heap 4 

Processor 1 

Processor 2 

Processor 3 

Processor 4 

 Superblocks  

  Each superblock has some blocks 

(Empty/Partially  filled /Fully Filled) 

 thread ‘k’ maps to 

heap ‘k’  

Source : http://www.hoard.org/ 

http://www.hoard.org/
http://www.hoard.org/


Multi-Core Processors :  Architecture- Part-II -Memory Allocators  11 C-DAC   hyPACK-2013 

Hoard : A Memory allocator   

 Allocation and freeing in Hoard Memory Allocator 

 Hoard maintains usage statistics for each heap 

 The amount of memory allocated by Hoard from 

the operating system  held in heap i. 

 The amount of memory is use (“Live”) in heap “I” 

  Hoard allocates memory from the system in chunks as 

well as superblocks  

  Each superblock is an array of some number of blocks 

(objects) and contains a free list of its available blocks 

maintained in LIFO order to improve locality. 

 All the superblocks are of same size (S), a multiple 

of system page size. 



Multi-Core Processors :  Architecture- Part-II -Memory Allocators  12 C-DAC   hyPACK-2013 

Hoard : A Memory allocator   

 Allocation and freeing in Hoard Memory Allocator  
Collision of heap segments to threads by hashing on the LWP id. 

 The number of LWP’s – No of Processors  

  Initially global heap is empty 

 Thread  ‘k’ is mapped to heap ‘k’  

 Global heap is empty  

 Heap 1 has two superblocks (one is partially full & 

one is empty) 

 Heap 2 has completely full superblock 

 Superblock size = S  
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x1 

x2 
x9 

Global heap 

Heap 1 Heap 2 

t1: x9=malloc(s); t1: free(y4); 

Hoard : A Memory allocator   

Global heap 

 Allocation and freeing in Hoard Memory Allocator  
Collision of heap segments to threads by hashing on the LWP id. 

 The number of LWP’s I set to  No of Processors  

y1 

y2 

y3 

y4 

x1 

x2 
x9 

Global heap 

Heap 1 Heap 2 

Global heap 

y1 

y2 

y3 
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x1 

x9 

Global heap 

Heap 1 

y1 

y2 

y3 

Heap 2 

y4 

t2: free(x2); 

Global heap 
 
 
 
 
 

t2: free(x9); 

x1 

Heap 1 

y1 

y2 

y3 

Heap 2 

Hoard : A Memory allocator   

Source : http://www.hoard.org/ 

http://www.hoard.org/
http://www.hoard.org/
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Hoard : A Memory allocator   

 Allocation and freeing in Hoard Memory Allocator 

 Fragmentation Problems 

 Re-cycle completely empty superblocks for re-use. 

  Avoid false Sharing  

  Memory Allocation and De-allocation Algorithms 
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Hoard : A Memory allocator   

 Single Threaded Applications 

 Each thread allocates one small object, writes on it a 

number of times and then frees it. 

 Overheads ignore  

 Superblock size  = 1024*1024 Bytes. 

 Different classes & the number of classes 

 Avoid false Sharing  
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Hoard : A Memory allocator   

 Multi-threaded  Threaded Memory Benchmarks 

 Shbench : The large object size – randomly 

scattered in the super block  

• Represents real program 

• One Size Class  per Superblock 

• Dynamic Storage Allocation  

 
Larson Benchmark: Estimation of workload for server 

 

Speedup, Scalability, and False Sharing avoidance 
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Hoard : A Memory allocator   

 Taxonomy of Memory Allocated Algorithms  

 
 Serial Single heap  

 Concurrent Single Heap 

 Pure  Private heaps 

 Private heaps with ownership 

 Private heaps with thresholds 
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Hoard : A Memory allocator   

Taxonomy of Memory Allocated Algorithms  :Issues  

 

 Contention for the lock primitives  

 Number of size Classes   

  Freeing Blocks O(log C) 

 Multiple heap Allocation  

 Speed, Scalability, false Sharing avoidance and 

low fragmentation 
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 An overview of Memory Allocation  for Multi-threading 

Applications 
 

Conclusions 
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Thank You  
 Any questions ? 


