
Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 1 C-DAC hyPACK-2013

Lecture Topic:

Multi-Core Processors : Mixed Mode Prog:

MPI and OpenMP

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-1:Mult-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators
Power-Aware Computing – Performance of

Applications Kernels

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 2 C-DAC hyPACK-2013

 Example programs using different OpenMP Pragmas for

SPMD and MPMD programs

 Mixing of MPI and OpenMP

 Key factors That impact Performance and Performance

Tuning Methodology

 Comparative features of Shared & Distributed Memory

Programming Paradigms

Lecture Outline

Following Topics will be discussed

Advance Features of OpenMP

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 3 C-DAC hyPACK-2013

 OpenMP’s constructs fall into 5 categories:

 Parallel Regions

 Work sharing

 Data Environment

 Synchronization

 Runtime functions/environment variables

 OpenMP is basically the same between Fortran and C/C++

OpenMP : Contents

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 4 C-DAC hyPACK-2013

Need OpenMP-complaint compiler

OpenMP consists of a rich-set of pragmas, environment
variables and a runtime API for threading

The environment variables and APIs should be used
sparingly because they can affect performance
detrimentally.

OpenMP automatically uses an appropriate number of
threads for the target system.

OpenMP : Key Points

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 5 C-DAC hyPACK-2013

 Control how “omp for schedule(RUNTIME)” loop iterations
are scheduled.

 OMP_SCHEDULE “schedule[, chunk_size]”

 Set the default number of threads to use.

 OMP_NUM_THREADS int_literal

 Can the program use a different number of threads in
each parallel region?

 OMP_DYNAMIC TRUE || FALSE

 Do you want nested parallel regions to create new teams
of threads, or do you want them to be serialized?

 OMP_NESTED TRUE || FALSE

OpenMP : Environment Variables

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 6 C-DAC hyPACK-2013

 Environment variables are not propagated by mpirun, so
you may need to explicitly set the requested number of
threads with OMP_NUM_THREADS().

 OpenMP is:

 A great way to write parallel code for shared memory
machines.

 A very simple approach to parallel programming.

 Your gateway to special, painful errors (race
conditions).

 OpenMP impacts clusters:

 Mixing MPI and OpenMP.

 Distributed shared memory.

OpenMP : Environment Variables

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 7 C-DAC hyPACK-2013

Is MPI Large or Small? (use MPI-2.0 on Multi Cores)

 MPI is large (125 Functions)

• MPI’s extensive functionality requires many functions

• Number of functions not necessarily a measure of complexity

 MPI is small (6 Functions)

• Many parallel programs can be written with just 6 basic functions

 MPI is just right candidate for message passing

• One can access flexibility when it is required

• One need not master all parts of MPI to use it

 Is MPI Large or Small?

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 8 C-DAC hyPACK-2013

Point-to-Point Communications

The sending and receiving of messages between pairs of processors.

 BLOCKING SEND: returns only after the corresponding RECEIVE

operation has been issued and the message has been transferred.

 MPI_Send

 BLOCKING RECEIVE: returns only after the corresponding SEND

has been issued and the message has been received.

 MPI_Recv

 MPI Blocking Send and Receive
(Contd…)

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 9 C-DAC hyPACK-2013

Blocking Sending and Receiving messages

 Process 0 Process 1

 Send Recv

 Fundamental questions answered

 To whom is data sent?

 What is sent? How does the receiver identify it?

MPI Send and Receive

Other Modes of Communication : Non-Blocking

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 10 C-DAC hyPACK-2013

Sender mode Notes

Synchronous send
 Only completes when the receive has

completed

Buffered send
Always completes (unless an

error occurs), irrespective of receiver.

Standard send
 Either synchronous or

buffered.

Ready send

 Always completes (unless an error occurs),

irrespective of whether the receive has

completed.

Receive Completes when a message has arrived.

MPI Communication Modes

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 11 C-DAC hyPACK-2013

Characteristics of Collective Communication Operations

 Collective action over a communicator

 All processes must communicate

 Synchronization may or may not occur

 All collective operations are blocking. (Refer MPI-2 Enhancements)

 No tags.

 Receive buffers must be exactly the right size

MPI Collective Communications
(Contd…)

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 12 C-DAC hyPACK-2013

 MPI Collective Communications

Type Routine Functionality

Data Movement MPI_Bcast

MPI_Gather

MPI_Gatherv

MPI_Allgather

MPI_Allgatherv

One-to-all, Identical Message

All-to-One, Personalized messages

A generalization of MPI_Gather

A generalization of MPI_Gather

A generalization of MPI_Allgather

MPI_Scatter

MPI_Scatterv

One-to-all Personalized messages

A generalization of MPI_Scatter

MPI_Alltoall

MPI_Scatterv

All-to-All, personalized message

A generalization of MPI_Alltoall

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 13 C-DAC hyPACK-2013

 MPI Collective Communications

Type Routine Functionality

Aggregation MPI_Reduce

MPI_Allreduce

MPI_Reduce_scatter

MPI_Scan

All-to-one reduction, All-to-One,

A generalization of MPI_Reduce

A generalization of MPI_Reduce

All-to-all parallel prefix

Synchronization MPI_Barrier

MPI_Scatterv

Barrier Synchronization

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 14 C-DAC hyPACK-2013

 OpenMP and MPI coexist by default:

 MPI will distribute work across processes, and these
processes may be threaded.

 OpenMP will create multiple threads to run a job on
Multi Core Systems.

 But be careful … it can get tricky:

 Messages are sent to a process on a system not to a
particular thread.

 Make sure you implementation of MPI is threadsafe.

OpenMP : Mixing OpenMP and MPI

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 15 C-DAC hyPACK-2013

 The following will work on some MPI implementations, but may fail for

others: MPI libraries are not always thread safe.

MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;
#pragma omp parallel
{
 int tag, swap_neigh, stat, omp_id = omp_thread_num();
 long buffer [BUFF_SIZE], incoming [BUFF_SIZE];
 big_ugly_calc1(omp_id, mpi_id, buffer);
 // Finds MPI id and tag so
 neighbor(omp_id, mpi_id, &swap_neigh, &tag);// messages don’t conflict
 MPI_Send (buffer, BUFF_SIZE, MPI_LONG, swap_neigh,
 tag, MPI_COMM_WORLD);
 MPI_Recv (incoming, buffer_count, MPI_LONG, swap_neigh,
 tag, MPI_COMM_WORLD, &stat);
 big_ugly_calc2(omp_id, mpi_id, incoming, buffer);
#pragma critical
 consume(buffer, omp_id, mpi_id);}

OpenMP : Dangerous mixing of OpenMP and MPI

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 16 C-DAC hyPACK-2013

 Keep message passing and threaded sections of your program
separate:

 Setup message passing outside OpenMP regions

 Surround with appropriate directives (e.g. critical section or
master)

 For certain applications depending on how it is designed it may
not matter which thread handles a message.

• Beware of race conditions though if two threads are probing on
the same message and then racing to receive it.

OpenMP : Messages and Threads

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 17 C-DAC hyPACK-2013

MPI_Init(&argc, &argv) ; MPI_Comm_Rank(MPI_COMM_WORLD,&mpi_id) ;
// a whole bunch of initializations
#pragma omp parallel for
for (I=0;I<N;I++) {
 U[I] = big_calc(I);
}
 MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, swap_neigh,
 tag, MPI_COMM_WORLD);

 MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh,
 tag, MPI_COMM_WORLD, &stat);
#pragma omp parallel for
for (I=0;I<N;I++) {
 U[I] = other_big_calc(I, incoming);
}
consume(U, mpi_id);

OpenMP : Safe mixing of OpenMP and MPI

 Put MPI in sequential regions

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 18 C-DAC hyPACK-2013

MPI_Init(&argc,&argv) ; MPI_Comm_Rank(MPI_COMM_WORLD,&mpi_id);
// a whole bunch of initializations
#pragma omp parallel
{
#pragma omp for
 for (I=0;I<N;I++) U[I] = big_calc(I);
#pragma master
{
 MPI_Send(U, BUFF_SIZE,MPI_DOUBLE,neigh, tag, MPI_COMM_WORLD);
 MPI_Recv(incoming,count,MPI_DOUBLE,neigh, tag, MPI_COMM_WORLD, &stat);
}
#pragma omp barrier
#pragma omp for
 for (I=0;I<N;I++) U[I] = other_big_calc(I, incoming);
#pragma omp master
 consume(U, mpi_id);

}

OpenMP : Safe mixing of OpenMP and MPI

Protect MPI calls inside

a parallel region

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 19 C-DAC hyPACK-2013

Each process prints Hello World along with its process rank

and thread identifier(id)

Call MPI_INIT(ierror)

Call MPI_COMM_SIZE(MPI_COMM_WORLD,Numprocs,ierror)
Call MPI_COMM_RANK(MPI_COMM_WORLD,MyRank,ierror)

Call OMP_SET_NUM_THREADS(4)

!$OMP PARALLEL PRIVATE(threadid)

threadid=OMP_GET_THREAD_NUM()

Print *,”Hello World from Process “,MyRank,”Thread”,threadid

!$OMP END PARALLEL

include mpif.h
Header file for

MPI

Call MPI_FINALIZE(ierror)

MPI-OpenMP Example

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 20 C-DAC hyPACK-2013

Shared and Distributed Memory Comparison

Feature Shared Memory Distributed Memory

Ability to parallelize

small parts of an

application at a time

Relatively easy to do.

Reward versus effort

varies widely

Relatively difficult to do.

Tends to require more

of an all-or-nothing

effort.

Feasibility of scaling

an application to a

large number of

processors

Currently, few vendors

provide scalable

shared memory

systems (e.g.,

ccNUMA systems)

Most vendors provide

the ability to cluster

nonshared memory

systems with moderate

to high-performance

interconnects

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 21 C-DAC hyPACK-2013

Feature Shared Memory Distributed Memory

Additional complexity

over serial code (to

be addressed by

programmer)

Simple parallel

algorithms are easy

and fast to implement.

Implementation of

highly scalable

complex algorithms is

supported.

Significant additional

overhead and

complexity even for

implementing simple

and localized parallel

constructs.

(Contd..)

Shared and Distributed Memory Comparison

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 22 C-DAC hyPACK-2013

Feature Shared Memory Distributed Memory

Impact on code

quantity (e.g.,

amount of additional

code required) and

code quality (e.g., the

read-ability of the

parallel code)

Typically requires a

small increase in code

size (2-25%)

depending on extent

of changes required

for parallel scalability.

Code readability

requires some

knowledge of shared

memory constructs,

but is otherwise

maintained as

directives embedded

within serial code

Tends to require extra

copying of data into

temporary message

buffers, resulting in a

significant amount of

message handling

code. Developer is

typically faced with

extra code complexity

even in non-

performance-critical

code segments.

Readability of code

suffers accordingly.

(Contd..)

Shared and Distributed Memory Comparison

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 23 C-DAC hyPACK-2013

Feature Shared Memory Distributed Memory

Availability of

application

development and

debugging

environments

Requires a special

compiler and a runtime

library that supports

OpenMP. Well-written

code will compile and run

correctly on one processor

without an OpenMP

compiler. Single memory

address space simplifies

development and support

of a right debugger

functionality.

Does not require a

special compiler. Only

a library for the target

computer is required,

and these are generally

available. Debuggers

are more difficult to

implement because a

direct, global view of all

program memory is not

available.

(Contd..)

Shared and Distributed Memory Comparison

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 24 C-DAC hyPACK-2013

 Different OpenMP Constructs on Parallel Regions;

Work sharing; Data Environment ; Synchronization;

Runtime functions and environment variables have

been discussed

 Example programs using different OpenMP Pragmas for

SPMD and Non-SPMD programs

 Mixing of MPI and OpenMP and thread Safety issues

are important for producing correct results

 Performance on Shared Memory machines /Multi Cores

for applications involving structured computations is

excellent

Conclusions

Shared Memory Prog. :MPI & OpenMP

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 25 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 26 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 27 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : Mixed Mode Programming: MPI & OpenMP 28 C-DAC hyPACK-2013

 Thank You
 Any questions ?

