
Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 1 C-DAC hyPACK-2013

Lecture Topic:
Multi-Core Processors: MPI -2 Part-III (MPI 2.0 -Multi-

threaded Prog. -Thread Safety & MPI 3.0 Efforts)

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-12 : Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators
Power-Aware Computing – Performance of

Applications Kernels

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 2 C-DAC hyPACK-2013

 Extensions to MPI

 MPI & Thread Safety

 MPI & Multi-threaded Programming

 MPI Library Calls

 MPI 3.0 Efforts

Quick overview of what this Lecture is all about

Part-III (MPI 2.0 -Multi-threaded Programming -

Thread Safety & MPI 3.0 Efforts

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 3 C-DAC hyPACK-2013

Message-Passing Programming Paradigm : Processors are

connected using a message passing interconnection network.

Message Passing Architecture Model

 COMMUNICATION

NETWORK

P • • • •

M

P

M

P

M

P

M

 On most Parallel Systems, the processes involved in the execution

of a parallel program are identified by a sequence of non-negative

integers. If there are p processes executing a program, they will

have ranks 0, 1,2, ……., p-1.

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 4 C-DAC hyPACK-2013

Where to use MPI –2.0 ?

 You need a portable parallel program on Multi-Core Processors

 You are writing a parallel Library & You have irregular data

relationships that do not fit a data parallel model

Information about MPI

Why learn MPI-2 ?

 Portable & Expressive, Universal acceptance

 Good way to learn about subtle issues in parallel computing

What is MPI-3 ?

 Multi-threaded Programming :Multi-core Processors

 Programming - Treating threads as MPI Processes

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 5 C-DAC hyPACK-2013

The Message Passing Abstraction

Local process

 Address space

Process P1

If (condition)

{

…..

Compute

}

Else

{

Communicate

}

Compute Function A

If (Rank = 3)

{

Communicate

Else

{

Compute

}

STOP

Local process

 Address space

Process P2

If (condition)

{

 Compute

Compute

}

Else

{

Communicate

}

Compute Function A

If (Rank = 1)

{

Communicate

Else

{

Compute

}

STOP

Local process

 Address space

Process P3

If (condition)

{

Communciate

Compute

}

Else

{

Communicate

}

Compute Function A

If (Rank = 3)

{

Compute

Else

{

Communicate

}

STOP

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 6 C-DAC hyPACK-2013

The Message Passing Abstraction

Local process

 Address space

Process P

Local process

 Address space

Process Q

Address X
Address Y Send X,Q, t

Receive Y,P,t

Match

User-Level Send/receive message-passing abstraction : A data transfer from

one local address space to another occurs when a send to particular processes

matches with a receive posted by that process

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 7 C-DAC hyPACK-2013

 Extensions to the message-passing model
 Parallel I/O

 One-sided operations

 Dynamic process management

 Thread Safety

 Making MPI more robust and convenient
 C++ and Fortran 90 bindings

 External interfaces, handlers

 Extended collective operations

 Language interoperability

 MPI interaction with threads

 Making MPI - Multi-threaded Programming for Multi-
core Processors
 C++ and Fortran 90 bindings

MPI-2 Contents & MPI 3.0 Efforts

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 8 C-DAC hyPACK-2013

MPI-2 : Introduction to Thread Safety

 Thread Safety & Message Passing Library

– Thread safety means that multiple threads can be
executing Message Passing library calls without
interfacing with one another

– Thread unsafety occurs when when the message passing system is
expected to hold certain parts of the process state.

– It is impossible to hold certain parts of the process state and it is
impossible to hold that process state for more than one thread at time.

– POSIX Standard also known as Pthreads – widely used definition
of threads

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 9 C-DAC hyPACK-2013

MPI-2 : Introduction to Thread Safety

 Threads are becoming the parallel programming model for
Multi-core processors and Shared Memory Machines

 Threads can be used in conjunction with Message Passing
Library

 Threads can improve performance and reduce overheads in
communication

 Threads provide a natural implementation of non- blocking
communication operations

 Threads can increase the efficiency of the implementation of
collective operations

Source : Reference : [4], [6], [11],[12],[24],[25], [26]

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 10 C-DAC hyPACK-2013

MPI-2 : Introduction to Thread Safety

 Thread Safety & Message Passing Library

– Example : The concept of “the most recently received message”
to avoid passing a status stored on the process’s stack

– That is user code will look something like

 recv(msg, type);

 src = get_src();

 len = get_len();

– Single threaded case - Woks well

– Multi-threaded case - several receives may be in progress
simultaneously

– When get_src is called, it ma not be clear for which message the

source is supposed to be returned.

– MPI provides thread safe implementations so that MPI can work
hand to hand with thread libraries

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 11 C-DAC hyPACK-2013

Threads and Processes in MPI-2

 Thread systems where the operating system (the kernel) is not

involved in managing the individual threads are called user threads.

 User threads tend to be faster than kernel threads (User threads takes

smaller time to switch between the threads within the same process)

 Restriction : System calls will block all threads in the process containing

the thread, made the system call.) Not just the calling thread)

 Difficult to write truly portable multithreaded programs (Application can

not assume the the entire process will not be blocked when a thread

calls a library routine)

 The POSIX thread (Pthreads) specification does not specify whether

the threads are user or kernel; it it is upto threads implementation

Source : Reference : [4], [6], [11],[12],[24],[25], [26]

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 12 C-DAC hyPACK-2013

 Mixed-Model Programming - MPI for SMP Clusters

 - MPI for Multi core Processors

 Thread safe - libmpi_mt.so

 Non-thread-safe (Default) - libmpi.so

 For programs that are not multi-threaded, the user should

use libmpi.so whenever possible for maximum

performance.

 Reference: Sun MPI 3.0

MPI-2.0 : Thread Safe Library

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 13 C-DAC hyPACK-2013

Threads and MPI in MPI-2

 Performance tradefoffs between multi-threaded and
single-threaded code.

 I/O operations

 Against Inconsistent updates to the same memory
location from different threads

 Software locks and System locks are quite expensive

 Vendors sometimes provide single threaded /Multi-
threaded libraries

 Have I been linked with the right library ?

 DO I suffer with occasional and mysterious errors

Source : Reference : [4], [6], [11],[12],[24],[25], [26]

Thread Safety & MPI – Issues to be addressed

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 14 C-DAC hyPACK-2013

 Supports communication via shared memory between MPI

Processes

 Based on Message size (Short or Long Messages)

 Compromise between Performance and Memory Use

 Implementation varies as per Vendor Specification

 Works for SMPs and NUMA based shared Memory

Computer.

MPI - Shared Memory Allocation

Source : Reference : [4], [6], [11],[12],[24],[25], [26], MPI-2 or SunMPI 3.0

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 15 C-DAC hyPACK-2013

 MPI-2 Specification - MPI & threads

 Use thread-safe library (For ex : libmpi_mt.so in SUN

MPI 3.0)

 When two concurrently running threads make MPI calls,

the outcome will be as if the calls executed in some

order.

 Blocking MPI calls will block the calling thread only. A

blocked calling thread will not prevent progress of other

runnable threads on the same process, nor will it

prevent them from executing MPI calls.

 Multiple sends and receives are concurrent
Reference: Sun MPI 3.0

MPI – Multithreaded Programming

Source : Reference : [36], [37], [38], [39], [40], [41]

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 16 C-DAC hyPACK-2013

Each thread within an MPI process may issue MPI calls;

however, threads are not separately addressable.

That is, the rank of a send or receive call identifies

a process, not a thread, meaning that no order is

defined for the case where two threads call

MPI_Recv with the same tag and communicator.

Such threads are said to be in conflict.

Note : Overheads in MPI implementation –

 How to handle conflicts and Data Races ?

 How to write thread Safe programs ?

MPI – Multithreaded Programming (Thread Safe)

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 17 C-DAC hyPACK-2013

 Each thread within an MPI process may issue MPI calls;

however, threads are not separately addressable.

 If threads within the same application post conflicting

communication calls, data races will result.

– You can prevent such data races by using distinct

communicators or tags for each thread.

 Prevention of data races and conflict - User can write

thread safe programs

MPI – Multithreaded Programming (Thread Safe)

Source : Reference : [36], [37], [38], [39], [40], [41]

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 18 C-DAC hyPACK-2013

 Adhere to these guidelines:

 You must not have an operation posted in one thread

and then completed in another.

 you must not have a request serviced by more than

one thread.

 A data type or communicator must not be freed by

one thread while it is in use by another thread.

 Once MPI_Finalize has been called, subsequent calls

in any thread will fail.

MPI – Multithreaded Programming (Thread Safe)

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 19 C-DAC hyPACK-2013

 Adhere to these guidelines:

 You must ensure that a sufficient number of lightweight

processes (LWPs) are available for your multithreaded

program.Failure to do so may degrade performance or

even result in deadlock.

 You cannot stub the thread calls in your multithreaded

program by omitting the threads libraries in the link line.

 The libmpi.so library automatically calls in the threads

libraries, which effectively overrides any stubs.

MPI – Multithreaded Programming (Thread Safe)

Reference: Sun MPI 3.0

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 20 C-DAC hyPACK-2013

 Provides specific guidelines that apply for specific some -

routines - Collective calls and Communicator operations

 MPI_Wait, MPI_Waitall, MPI_Waitany, MPI_Waitsome

 In a program where two or more threads call one of these

routines, you must ensure that they are not waiting for

the same request. Similarly, the same request cannot

appear in the array of requests of multiple concurrent

wait calls.

MPI – Multithreaded Programming (Thread Safe)

MPI Library Calls - Guidelines

Source : Reference : 25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 21 C-DAC hyPACK-2013

MPI_Cancel

 One thread must not cancel a request while that request is being

serviced by another thread.

MPI_Probe, MPI_Iprobe

 A call to MPI_Probe or MPI_Iprobe from one thread on a given

communicator should not have a source rank and tags that match

those of any other probes or receives on the same communicator.

Otherwise, correct matching of message to probe call may not occur.

MPI – Multithreaded Programming (Thread Safe)

MPI Library Calls - Guidelines

Source : Reference : 25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 22 C-DAC hyPACK-2013

 Collective Calls

 Collective calls are matched on a communicator

according to the order in which the calls are issued at

each processor.

 All the processes on a given communicator must make

the same collective call.

 You can avoid the effects of this restriction on the

threads on a given processor by using a different

communicator for each thread.

MPI – Multithreaded Programming (Thread Safe)

Source : Reference : [4], [6], [11],[12],[24],[25], [26], MPI-2 or SunMPI 3.0

MPI Library Calls - Guidelines

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 23 C-DAC hyPACK-2013

 Communicator Operations

 Use the same or different communicators.

 threads in different processes participating in the

same communicator operation require grouping

 Do not free a communicator in one thread if it is still

being used by another thread.

MPI – Multithreaded Programming (Thread Safe)

MPI Library Calls - Guidelines

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 24 C-DAC hyPACK-2013

 Communicator Operations

 Each of the communicator functions operates simultaneously with each of

the noncommunicator functions, regardless of what the parameters are

and of whether the functions are on the same or different communicators.

However, if you are using multiple instances of the same communicator

function on the same communicator, where all parameters are the same, it

cannot be determined which threads belong to which resultant

communicator. Therefore, when concurrent threads issue such calls, you

must assure that the calls are synchronized in such a way that threads in

different processes participating in the same communicator operation are

grouped. Do this either by using a different base communicator for each

call or by making the calls in single-thread mode before actually using

them within the separate threads. Do not free a communicator in one

thread if it is still being used by another thread.

MPI – Multithreaded Programming (Thread Safe)

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

Reference: Sun MPI 3.0

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 25 C-DAC hyPACK-2013

Threads and MPI in MPI-2

 MPI-2 function to initialize

 int MPI_Init_thread

 int *argc,char ***argv,int required, int *provided)

 (C-Binding)

 MPI_INIT_THREAD(required, provided, ierror)

 Fortran binding

 Regardless of of whether MPI_Init or MPI_Init_thread is

called, the MPI program must end with a call to MPI_finalize

MPI Library Calls - Guidelines

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 26 C-DAC hyPACK-2013

Threads and MPI in MPI-2

 MPI-2 specifies four levels of thread safety

 MPI_THREAD_SINGLE: only one thread

 MPI_THREAD_FUNNELED: only one thread that makes MPI calls

 MPI_THREAD_SERIALIZED: only one thread at a time makes MPI
calls

 MPI_THREAD_MULTIPLE: any thread can make MPI calls at any
time

 MPI_Init_thread(…, required, &provided) can be used instead of
MPI_Init

Source : Reference : [4], [6], [11],[12],[24],[25], [26], [36], [37], [38], [39], [40], [41]

MPI Library Calls - Guidelines

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 27 C-DAC hyPACK-2013

 Increasing prevalence of multi- and many-core processors

calls for extended MPI facilities for dealing with threads as

first class MPI entities.

 This leads to issues like the Probe/Recv consistency

issue in MPI

 Efforts seeks to introduce a powerful and convenient way

of direct addressing of the threads as MPI processes.

MPI 3.0 Efforts

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 28 C-DAC hyPACK-2013

MPI 3.0 Efforts

 Treating Threads as MPI Processes

 Dynamic Thread levels

 I/O threads

 Address Thread Locks & MPI

 Source : Reference : MPI-3 or SunMPI 3.0

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 29 C-DAC hyPACK-2013

MPI 3.0 Thread Init/Finalize Routines

 Problem :

 MPI currently does not explicitly know threads

 Process can be mapped to different
cores/SMTs

 Thread scheduling is left to the OS

 Relevant Issues:

 Explicit Thread Init/Finalize Routines

 Allow the process manager to perform intelligent
mapping

 Optional calls - application does not necessarily
have to call

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 30 C-DAC hyPACK-2013

MPI 3.0 - Dynamic Threads Levels

 Problem: MPI specifies thread-level support at Init time

 Even if a small fraction of the code uses

 THREAD-MULTIPLE, the entire code is forced to go

through locks

 Performance Impact (messaging rate)

 Efforts

 Add calls for MPI_Set_thread_level() to dynamically

change thread-level within the application

Source : Reference : Intel MPI, MPI-3, SunMPI 3.0, 36,37,38,39,40,41

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 31 C-DAC hyPACK-2013

MPI 3.0 - Dynamic Threads Levels

 MPI_Set_thread_level(int required, int* provided)

 Hinting mechanism only

 Relevant Issues:

 If an implementation allows the thread-level reduction, but

not increase, the application might not be able to deal with it

 Asynchronous Progress Threads

 Requires synchronization with the progress thread to

change level

 Collective Operations: Some MPI implementations use

different collective operations based on the thread-level

 Source : Reference : Intel MPI, MPI-3, SunMPI 3.0, 36,37,38,39,40,41

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 32 C-DAC hyPACK-2013

 A new collective routine MPI_Comm_thread_register() is

introduced to create a communicator in which existing threads

become MPI processes with unique ranks.

 The existing routine MPI_Comm_free() is extended to operate on

the resulting communicators.

 Prerequisite: MPI_THREAD_MULTIPLE thread support level
Reference: Intel MPI

MPI treating Threads as MPI process

Source : Reference : Intel MPI, MPI-3, SunMPI 3.0, 36,37,38,39,40,41

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 33 C-DAC hyPACK-2013

MPI_Comm_thread_register(comm, local_thread_index, local_num

_threads, newcomm)

IN comm original communicator

IN local_thread_index index of the calling thread (0 to local_

 num_threads – 1) on the current MPI

 process in comm

IN local_num_threads total number of threads issuing this

 call on the current MPI process in

comm

OUT newcomm new communicator based on threads
Reference: Intel MPI

MPI_comm_thread_register (basic language binding)

Source : Reference : Intel MPI, MPI-3, SunMPI 3.0, 36,37,38,39,40,41

MPI treating Threads as MPI process

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 34 C-DAC hyPACK-2013

C:

 int MPI_Comm_thread_register(MPI_Comm comm, int

local_thread_

Index, int_local_num_threads, MPI_Comm *newcomm)

Fortran:

MPI_COMM_THREAD_REGISTER(INTEFER COMM, INTEGER

LOCAL_THREAD_INDEX, INTEGER LOCAL_NUM_THREADS,

INTEGER NEWSOMM, INTEGER IERROR)
Reference: Intel MPI

MPI_comm_thread_register (basic language binding)

Source : Reference : Intel MPI, MPI-3, 36,37,38, 40,41

MPI treating Threads as MPI process

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 35 C-DAC hyPACK-2013

!$OMP parallel num_treads(4)

call MPI_COMM_THREAD_REGISTER(&

MPI_COMM_WORLD, OMP_GET_THREAD_NUM(),

 & OMP_GET_NUM_THREADS(), NEWCOMM)

!

! Whatever MPI operations on and in NEWCOMM

!

 call MPI_COMM_FREE(NEWCOMM)

!$OMP parallel end

Example: OpenMP parallel section

Source : Reference : Intel MPI, MPI-3, 36,37,38, 40,41

MPI treating Threads as MPI process

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 36 C-DAC hyPACK-2013

Summary

 MPI-2 provides how MPI interfaces with threads

 MPI-2 can deliver to libraries and applications portability
across a diverse set of environments.

 MPI-3 provides major extensions to the original message-
passing model targeted by MPI-1 &MPI-2

 Many Vendor efforts on Treating threads as MPI processes

Source : [4], [6], [11],[12],[24],[25], [26]
Intel MPI, MPI-3, SunMPI 3.0, 36,37,38,39,40,41

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 37 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 38 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 39 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 40 C-DAC hyPACK-2013

32. http://www.erc.msstate.edu/mpi/

33. http://www.arc.unm.edu/workshop/mpi/mpi.html

34. http://www.mcs.anl.gov/mpi/mpich

35. The MPI home page, with links to specifications for MPI-1 and MPI-2 standards :
http://www.mpi–forum.org

36. Hybrid Programming Working Group Proposals, Argonne National Laboratory, Uchiacago (2007-
2008)

37. TRAC Link : https://svn.mpi-forum.org/trac/mpi-form-web/wiki/MPI3Hybrid

38. Threads and MPI Software, Intel Software Products and Services 2008 - 2009

39. Sun MPI 3.0 Guide November 2007

40. Treating threads as MPI processes thru Registration/deregistration –Intel Software Products and
Services 2008 - 2009

41. Intel MPI library 3.2 - http://www.hearne.com.au/products/Intelcluster/edition/mpi/663/

References

http://www.arc.unm.edu/workshop/mpi/mpi.html
http://www.mcs.anl.gov/mpi/mpich

Multi-Core Processors MPI-2 Part-III :MPI 2.0-thread Prog./MPI 3.0 Efforts 41 C-DAC hyPACK-2013

 Thank You
 Any questions ?

