
Multi-Core Processors : MPI 1.0 Overview Part-III 1 C-DAC hyPACK-2013

Lecture Topic:
Multi-Core Processors:MPI 1.0 Overview (Part-III)

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-1: Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators
Power-Aware Computing – Performance of

Applications Kernels

Multi-Core Processors : MPI 1.0 Overview Part-III 2 C-DAC hyPACK-2013

 MPI advanced point-to-point communication

 MPI Communication modes

 Cost of Message Passing

 Types of Synchronization

 MPI –2 Features

 Conclusions

Lecture Outline

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-III 3 C-DAC hyPACK-2013

Message-Passing Programming Paradigm : Processors are

connected using a message passing interconnection network.

Message Passing Architecture Model

 COMMUNICATION

NETWORK

P • • • •

M

P

M

P

M

P

M

Multi-Core Processors : MPI 1.0 Overview Part-III 4 C-DAC hyPACK-2013

Communication Modes

The mode of a point to point communication operation governs when a

send operation is initiated, or when it completes

 Standard mode

 A send may be initiated even if a matching receive has not

been initiated

 Ready mode

 A send may be initiated only if a matching receive has been

initiated

MPI Communication Modes
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 5 C-DAC hyPACK-2013

Communication Modes

 Two basic ways of checking on non-blocking send and receives

 Call a wait routine that blocks until completion

 Call a test routine that returns a flag to indicate if complete

 Use non-blocking and completion routines allow computation and

communication to be overlapped

 mpi_wait(request_id,return_status,ierr)

 mpi_test(request_id,flag,return_status,ierr)

MPI Communication Modes
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 6 C-DAC hyPACK-2013

Communication Modes

 Non-blocking send

 Returns “immediately

 Message buffer should not be written to after return

 Must check for local completion

 Blocking send

 Returns when send is locally complete

 Message buffer should not be read from after return

 Must check for local completion

MPI Communication Modes
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 7 C-DAC hyPACK-2013

Communication Modes

 mpi_wait blocks until communication is complete

 mpi_status returns “immediately”, and sets flag to true if the

communication is complete

 Blocking receive

 Returns when receive is locally complete

 Message buffer can be read from after return

MPI Communication Modes (Contd…)

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-III 8 C-DAC hyPACK-2013

Sender mode Notes

Synchronous send Only completes when the

receive has completed

Buffered send
 Always completes (unless an

error occurs), irrespective of

receiver.

Standard send
 Either synchronous or

buffered.

Ready send Always completes (unless an

error occurs), irrespective of

whether the receive has

completed.

Receive Completes when a message

has arrived.

MPI Communication Modes
(Contd…)

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-III 9 C-DAC hyPACK-2013

OPERATION MPI CALL

Standard send MPI_SEND

Synchronous send MPI_SSEND

Buffered send MPI_BSEND

Ready send MPI_RSEND

Receive MPI_RECV

MPI Sender Modes

MPI Communication Modes (Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 10 C-DAC hyPACK-2013

Blocking Send

 A typical blocking send looks like

 send (dest, type, address, length)

Where

 dest is an integer identifier representing the process to receive the

message

 type is nonnegative integer that the destination can use to

selectively screen messages

 (address, length) describes a contiguous area in memory

containing the message to be sent

MPI Blocking Send and Receive

Multi-Core Processors : MPI 1.0 Overview Part-III 11 C-DAC hyPACK-2013

Point-to-Point Communications

The sending and receiving of messages between pairs of processors.

 BLOCKING SEND: returns only after the corresponding RECEIVE

operation has been issued and the message has been transferred.

 MPI_Send

 BLOCKING RECEIVE: returns only after the corresponding SEND

has been issued and the message has been received.

 MPI_Recv

MPI Blocking Send and Receive
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 12 C-DAC hyPACK-2013

Blocking Sends and Receives

If we are sending a large message, most implementations of

blocking send and receive use the following procedure.

S = Sender R = Receiver

 MPI_SEND (blocking standard send)

data transfer from

source complete
size > threshold

task waits

 MPI_RECV

wait

task continues when data

transfer to user’s buffer is

complete

Transfer doesn’t begin until

word has arrived that

corresponding MPI_RECV

has been posted

S

R

MPI Blocking Send and Receive
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 13 C-DAC hyPACK-2013

Non-Blocking Send and Receive

 Non-blocking Receive: does not wait for the message transfer to

complete, but immediate returns control back to the calling

processor.

 MPI_IRecv

C

 MPI_Isend (buf, count, dtype, dest, tag, comm, request);

 MPI_Irecv (buf, count, dtype, dest, tag, comm, request);

Fortran

 MPI_Isend (buf, count, dtype, tag, comm, request, ierror)

 MPI_Irecv (buf, count, dtype, source, tag, comm, request, ierror)

MPI Non-Blocking Send and Receive

Multi-Core Processors : MPI 1.0 Overview Part-III 14 C-DAC hyPACK-2013

Non-Blocking Communications

 Separate communication into three phases:

 Initiate non-blocking communication.

 Do some work (perhaps involving other communications ?)

 Wait for non-blocking communication to complete.

MPI Non-Blocking Send and Receive (Contd…)

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-III 15 C-DAC hyPACK-2013

MPI Non-Blocking Send and Receive (Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 16 C-DAC hyPACK-2013

If we are sending a small message, most implementations of non-blocking

sends and receive use the following procedure. The message can be sent

immediately and stored in a buffer on the receiving side.

S = Sender R = Receiver

An MPI-Wait checks to see it a non-blocking operation has completed. In this

case, the MPI_Wait on the sending side believes the message has already

been received.

MPI_ISEND (non-blocking standard send)

size threshold MPI_WAIT

Transfer to buffer on receiving

node can be avoided if

MPI_IRECV posted early enough

MPI_IRECV
MPI_WAIT

no delay if MPI_WAIT

is late enough

MPI Non-Blocking Send and Receive

Multi-Core Processors : MPI 1.0 Overview Part-III 17 C-DAC hyPACK-2013

If we are sending a large message, most implementations of non-blocking

sends and receive use the following procedure. The send is issued, but the

data is not immediately sent. Computation is resumed after the send, but

later halted by an MPI_Wait.

S = Sender R = Receiver

An MPI_Wait checks to see it a non-blocking operation has completed. In

this case, the MPI_Wait on the sending side sees that the message has not

been sent yet.

 MPI_ISEND (non-blocking standard send)

data transfer from

source complete
size > threshold

task waits
S

R

 MPI_WAIT

 MPI_IRECV MPI_WAIT transfer doesn’t begin until word

has arrived that corresponding

MPI_IRECV has been posted

no interruption

if wait is late

enough

MPI Non-Blocking Send and Receive
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 18 C-DAC hyPACK-2013

Communication Modes

 Synchronous mode

 The same as standard mode, except the send will not

complete until message delivery is guaranteed

 Buffered mode

 Similar to standard mode, but completion is always

independent of matching receive, and message may be

buffered to ensure this

MPI Communication Modes

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-III 19 C-DAC hyPACK-2013

Buffered Sends and Receives

If we the programmer allocate some memory (buffer space) for

temporary storage on the sending processor, we can perform a type of

non-blocking send.

S = Sender R = Receiver

MPI_RECV

MPI_BSEND (buffered send)

copy data

to buffer

data transfer to

user-supplied

buffer complete

task waits

S

R

MPI Buffered Send and Receive

Multi-Core Processors : MPI 1.0 Overview Part-III 20 C-DAC hyPACK-2013

MPI : Nonblocking operations, overlap effective

 Isend, Irecv, Waitall

MPI : Persistent Operations

 Potential saving

 “ Allocation of MPI_Request

 Variation of example

 “ sendinit, recvinit, startall, waitall

 “ startall(recvs), sendrecv/barrier, startall(rsends), waitall

 Performance is based on Vendor implementations

MPI Persistent Communication

Multi-Core Processors : MPI 1.0 Overview Part-III 21 C-DAC hyPACK-2013

MPI Message Passing - Deadlock

Causes of Deadlock : Deadlock occurs when all tasks are waiting

for events that haven’t been initiated yet.

The diagram demonstrates that the two sends are each waiting on their

corresponding receives in order to complete, but those receives are

executed after the sends, so if the sends do not complete and return,

the receives can never be executed, and both sets of communications

will stall indefinitely.

MPI_Send issue by both PEs

MPI Cause of Deadlock

PE 0

PE 1

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-III 22 C-DAC hyPACK-2013

MPI Message Passing : Avoiding Deadlock

 Change Ordering

Different ordering of calls between tasks

Arrange for one task to post its receive first and for the other

to post its send first.

 Non-blocking calls

Have each task post a non-blocking receive before it does any

other communication.

This allows each message to be received, no matter what the

task is working on when the message arrives or in what order

the sends are posted.

MPI- Avoiding Deadlock

Multi-Core Processors : MPI 1.0 Overview Part-III 23 C-DAC hyPACK-2013

MPI Message Passing Avoiding Deadlock

 MPI_Sendrecv

 MPI_Sendrecv_replace use MPI_Sendrecv (S).

 The send-receive combines in one call the sending of a

message to a destination and the receiving from a source

 Buffered mode

 Use buffered sends so that computation can proceed after

copying the message to the user-supplied buffer.

 This will allow the send to complete and the subsequent

receive to be executed.

MPI-Avoiding Deadlock

(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 24 C-DAC hyPACK-2013

Collective Communication

 Communications involving a group of processes.

 Called by all processes in a communicator.

 Examples:

 Barrier synchronization.

 Broadcast, scatter, gather.

 Global sum, global maximum, etc.

MPI Collective Communications
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 25 C-DAC hyPACK-2013

Characteristics of Collective Communication

 Collective action over a communicator

 All processes must communicate

 Synchronization may or may not occur

 All collective operations are blocking.

 No tags.

 Receive buffers must be exactly the right size

MPI Collective Communications
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 26 C-DAC hyPACK-2013

Collective Communications

Communication is coordinated among a group of processes

 Group can be constructed “by hand” with MPI group-manipulation

routines or by using MPI topology-definition routines

 Different communicators are used instead

 No non-blocking collective operations

MPI Collective Communications
(Contd…)

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-III 27 C-DAC hyPACK-2013

MPI : Support for Regular Decompositions

 Using topology routines

 “MPI_Cart_Create “

 User can define virtual topology

 Why you use the topology routines

 “Simple to use (why not?)

 “Allow MPI implementation to provide low expected contention

layout of processes (contention can matter)

 “Remember,contention still matters; a good mapping can

reduce contention effects

MPI - Using topology

Multi-Core Processors : MPI 1.0 Overview Part-III 28 C-DAC hyPACK-2013

Message type

 A message contains a number of elements of some particular
datatype

 MPI datatypes:

 Basic types

 Derived Data types (Vectors; Structs; Others)

 Derived types can be built up from basic types

 C types are different from Fortran types

MPI Datatypes

Multi-Core Processors : MPI 1.0 Overview Part-III 29 C-DAC hyPACK-2013

MPI Basic Datatypes - C

MPI Datatype

MPI_CHAR

MPI_SHORT

MPI_INT

MPI_LONG

MPI_UNSIGNED_CHAR

MPI_UNSIGNED_SHORT

MPI_UNSIGNED

MPI_UNSIGNED_LONG

MPI_FLOAT

MPI_DOUBLE

MPI_LONG_DOUBLE

MPI_BYTE

MPI_PACKED

C datatype

Signed char

 Signed short int

Signed int

Signed long int
Unsigned char

Unsigned short int

Unsigned int

Unsigned long int
Float

Double
Long double

MPI Basic Datatypes
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 30 C-DAC hyPACK-2013

Contiguous Data

 The simplest derived datatype consists of a number of
contiguous items of the same datatype

 C :

 int MPI_Type_contiguous (int count, MPI_Datatype
 oldtype,MPI_Datatype *newtype);

 Fortran :

 MPI_Type_contiguous (count, oldtype, newtype)

 integer count, oldtype, newtype

MPI Derived Data types
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 31 C-DAC hyPACK-2013

Constructing a Vector Datatype

 C

 int MPI_Type_vector (int count, int blocklength, int stride,
 MPI_Datatype oldtype, MPI_Datatype *newtype);

 Fortran

 MPI_Type_vector (count, blocklength, stride, oldtype, newtype,
 ierror)

Extent of a Datatype

 C

 int MPI_Type_extent (MPI_Datatype datatype, int *extent);

 Fortran

 MPI_Type_extent(datatype, extent, ierror)

 integer datatype, extent, ierror

(Contd…)
MPI Derived Data types

Multi-Core Processors : MPI 1.0 Overview Part-III 32 C-DAC hyPACK-2013

Constructing a Struct Datatype

 C :

 int MPI_Type_struct (int count, int array_of_blocklengths,

 MPI_Aint *array_of_displacements,

 MPI_Datatype *array_of_types,

 MPI_Datatype *newtype);

 Fortran :

 MPI_Type_Struct (count, array_of_blocklengths,

 array_of_displacements, array_of_types, newtype, ierror)

MPI Derived Data types
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 33 C-DAC hyPACK-2013

MPI Derived Data types

Committing a datatype

 Once a datatype has been constructed, it needs to be committed
before it is used.

 This is done using MPI_TYPE_COMMIT

 C

 int MPI_Type_Commit (MPI_Datatype *datatype);

 Fortran

 MPI_Type_Commit (datatype, ierror)

 integer datatype, ierror

(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 34 C-DAC hyPACK-2013

MPI : Performance of MPI datatypes

 Handing non-contiguous data;

 Test of 1000 element vector of doubles with stride of 24 doubles.

 “MPI_Type_vector” and “MPI_Type_struct(.*,*)”;

 “User packs and unpacks by hand

 Performance very dependent on implementation; should improve

with time

 Collect many small messages into a single large message;

 Use of collective when many copies bcast /gather

MPI Derived Data types
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 35 C-DAC hyPACK-2013

 Message passing programs that exploit data parallelism often use

messages to transfer required data among processors

 Startup time has both a hardware as well as software relate

component

 Common message-passing operations

 Point to point / Collective communication

 Blocking and Non-Blocking type

 Barrier

 Broadcast, Reduction, Prefix, Gather, Scalter, All to All

Gather and Scatter operations

Cost of Message Passing

Multi-Core Processors : MPI 1.0 Overview Part-III 36 C-DAC hyPACK-2013

Startup-time and transfer-time

 The time required to send a message can be divided into two

parts: startup-time and transfer-time

 Every time a message is passed between processors, the

processors involved must spend some time sending and

receiving the message

 The cost depends on the size of the message, how far it has to

travel, and the status of the network at the time of transmission

Cost of Message Passing
(Contd…)

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-III 37 C-DAC hyPACK-2013

Hardware :

 Time required to prepare the message for under-lying network

(such as adding header,trailer, and error correction information)

 The time to execute the writing algorithm

 The time to establish an interface between the local processor

and router

 Startup time is fixed and does not depend on the size of message

being sent

Cost of Message Passing
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 38 C-DAC hyPACK-2013

Software :

 Depends on the protocol followed by the underlying message

passing library

 In general, this may include the time spent by the message-passing

library for creating various internal data structures

 Copying the message to internal buffers

 Negotiating the transmission of data between the sending and

receiving processors

Cost of Message Passing (Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 39 C-DAC hyPACK-2013

The transfer time of a message

 Depends on the size of the message and bandwidth of

 The underlying interconnection network

 Per word transfer rate (tw)=1/r

 Transfer time of a message of size n words (ntw)

 In most cases, a message traveling from one processor

to another will have to traverse many links

Cost of Message Passing
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 40 C-DAC hyPACK-2013

Remarks :

 Different messages traverse the interconnection network

concurrently, more than one message may want to traverse the

same link of the interconnection network at the same time.

 In this case, only the one message at a time will traverse the link,

forcing the remaining messages to wait.

 As the message sizes and distances being traveled increase,

there is a greater likelihood that link contention will arise.

Cost of Message Passing
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 41 C-DAC hyPACK-2013

Remarks :

 The software related startup time is usually much higher than of

that of the hardware end

 Depending on the type of MPI communication operation performed

 May depend on the size of the message being sent

 The status of the receiving processor, and other traffic in the

network

 The transfer time of a message depends on the size of the

message and the bandwidth of the underlying interconnection

network

Cost of Message Passing
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 42 C-DAC hyPACK-2013

Cost of Collective Communication Operations

The time required by the MPI collective communication operation

varies greatly and it depends on type of communication call used.

 Barrier operation

 Element wise Reduce Operation of n words

 BROADCAST of a message of size n words

 Algorithm is more important for efficient implementation of

collective communication operations

 Time required by each operation depends on characteristic of

the interconnection network

Cost of Message Passing
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 43 C-DAC hyPACK-2013

Operation

BARRIER

BROADCAST

 REDUCE

 PREFIX

 SCATTER

 0(log p)

 0(n log p)

 0(n log p)

 0(np)

 0(np)

BROADCAST n is size of the message being broadcasted

REDUCE n is size of message stored in each processor

SCATTER n is size of the message received from each

 processor

(Cut-through- routing)

Complexity

Cost of Message Passing
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 44 C-DAC hyPACK-2013

Synchronization Speed

 Refers to the time needed for all processors to agree that they

have finished one step of a problem and are ready to go on

together to the next step

 Cost of message passing also depends on Synchronization

Speed of system

Synchronization methods

 Waiting all processes finish a loop

 Waiting until the first of any of the contributing processes finds a

particular answer

 Assigning a unique task to each processor from a list of tasks

Types of Synchronization

Multi-Core Processors : MPI 1.0 Overview Part-III 45 C-DAC hyPACK-2013

MPI-Synchronization Delays

 Message passing is a cooperative method - if the partner doesn’t

react quickly, a delay results

 There is a performance tradeoff caused by reacting quickly - it

requires devoting resources to checking.

Memory copies

 Memory copies are the primary source of performance problem
and single processor memcpy is often much slower than the

hardware

 Cost of non-contiguous data types

 Measured memcpy performance

MPI- Synchronization (Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 46 C-DAC hyPACK-2013

 Profiling

 Hooks allow users to intercept MPI calls

 Environmental

 Inquiry and Error control

 Collective

 Both built-in and user-defined collective operations

 Large number of data movements routines

 Subgroups defined directly or by topology

 Application-oriented process topologies

 Built-in support for grids and graphs (uses groups)

(Contd…)

Features of MPI

Multi-Core Processors : MPI 1.0 Overview Part-III 47 C-DAC hyPACK-2013

 General

Communicators combine context & group for message security

Thread safety

 Point-to-Point communication

 Structured buffers and derived datatypes, heterogeneity

 Modes: normal (blocking and non-blocking), synchronous,

 ready (to allow access to fast protocols), buffered

 Non-message-passing concepts included

Active messages and Threads

 Non-message-passing concepts not included:

Process management; Remote memory transfers; Virtual

 shared memory

Features of MPI
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-III 48 C-DAC hyPACK-2013

Tuning Performance (General techniques)

 Aggregation

 Decomposition

 Load Balancing

 Changing the Algorithm

Tuning Performance

 Performance Techniques

 MPI -Specific tuning

 Pitfalls

MPI - Performance

Multi-Core Processors : MPI 1.0 Overview Part-III 49 C-DAC hyPACK-2013

 Summary of MPI advanced point-to-point communication, Data

Types, Topologies

 Summary of MPI Collective Communication and Computations

 Cost of Message Passing Operations

Summary of MPI

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-III 50 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : MPI 1.0 Overview Part-III 51 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : MPI 1.0 Overview Part-III 52 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : MPI 1.0 Overview Part-III 53 C-DAC hyPACK-2013

 Thank You
 Any questions ?

