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 Review of MPI Point-to-Point Library Calls 
 

 MPI library calls used in Example program 
 

 MPI Collective Communication Library Calls 

 MPI Collective Communication  and Computations Library Calls 

Introduction to  Message Passing Interface (MPI)  

Quick overview of what this Lecture is all about 

Source : Reference : [11], [12], [25],  [26] 
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Message-Passing Programming Paradigm : Processors are 

connected using a message passing interconnection network. 

Message Passing Architecture Model 

 COMMUNICATION 
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P • • • •  
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P 

M 

P 

M 

P 
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Source : Reference : [11], [12], [25],  [26] 
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Basic steps in an MPI program  

 

 Initialize for communications 

 

 Communicate between processors 

 

 Exit in a “clean” fashion from the message-passing system when 

done communicating. 

 

MPI Basics 
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Blocking Sending and Receiving messages 

                      Process 0                                                      Process 1 

                                      

                          Send                                Recv                                       

                                                                                 

 Fundamental questions answered 

 To whom is data sent? 
 

 What is sent? 
 

 How does the receiver identify it? 

MPI Send and Receive 

Source : Reference : [11], [12], [25],  [26] 
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MPI Message Passing : Send  

Fortran       

MPI_SEND (buf, count, datatype, dest, tag, comm, ierror)                                       

[ IN buf ]           initial address of send buffer (choice)                                             

[ IN count ]       number of elements in send buffer ( nonnegative integer)          

[ IN datatype]   datatype of each send buffer element  (handle)                                                                     

[ IN dest ]         rank of destination (integer)                                                           

[ IN tag ]           message tag (integer)                                                                             

[ IN comm ]      communicator (handle) 

C    

MPI_Send (void *Message,  int count,  MPI_Datatype datatype,  int                                                        

                   destination,  int tag,  Mpi_Comm comm); 

(Contd…) 
MPI Point-to-Point Communication 



Multi-Core Processors : MPI 1.0 Overview Part-II  7 C-DAC   hyPACK-2013 

MPI Message Passing  : Receive 

Fortran                                                                                     
MPI_RECV (buf, count, datatype, source, tag, comm, status) 

[ OUT buf ]       initial address of receive buffer (choice)                                              

[ IN count ]       number of elements in receive buffer (integer)                          

[ IN datatype]   datatype of each receive buffer element (handle)               

[ IN source ]     rank of source (integer)                                                                

[ IN tag ]           message tag (integer)                                                                          

[ IN comm ]      communicator (handle)                                                                    

[ OUT status]   status object (Status) 

C  

MPI_Recv (void* buf, int count, MPI_Datatype datatype, int source, 

        int tag, MPI_Comm comm, MPI_Status *status); 

(Contd…) 
MPI Point-to-Point Communication 
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MPI_Send and  MPI_Recv 
 

 MPI provides for point-to-point communication   between pair of 

processes 
 

 Message selectively is by rank and message tag 
 

 Rank and tag are interpreted relative to the scope of the 

communication 
 

 The scope is specified by the communicator 
 

 Rank and tag may be wildcarded  
 

 The components of a communicator may not be wildcarded   

(Contd…) 
  MPI Point-to-Point Communication 
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Point-to-Point Communications 
 

The sending and receiving of messages between pairs of processors. 
 

 BLOCKING SEND: returns only after the corresponding RECEIVE 

operation has been issued and the message has been transferred. 
 

             MPI_Send 
 

 BLOCKING RECEIVE: returns only after the corresponding SEND 

has been issued and the message has been received. 
 

            MPI_Recv 

  MPI Blocking Send and Receive 
(Contd…) 
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MPI Datatype   Fortran Datatype 

MPI_INTEGER INTEGER   
MPI_REAL   REAL   

MPI_DOUBLE_PRECISION   DOUBLE PRECISION   

MPI_COMPLEX COMPLEX 

MPI_LOGICAL LOGICAL 

MPI_CHARACTER   CHARACTER(1)   

MPI_BYTE 

MPI_PACKED   

MPI Basic Datatypes 

MPI Basic Datatypes - Fortran 
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MPI Basic Datatypes - C 

  

MPI Datatype 

MPI_CHAR 

MPI_SHORT 

MPI_INT 

MPI_LONG 

MPI_UNSIGNED_CHAR 

MPI_UNSIGNED_SHORT 

MPI_UNSIGNED 

MPI_UNSIGNED_LONG 

MPI_FLOAT 

MPI_DOUBLE 

MPI_LONG_DOUBLE 

MPI_BYTE 

MPI_PACKED 

C datatype 

Signed char 

 Signed short int 

Signed int 

Signed long int 
Unsigned char 

Unsigned short int 

Unsigned int 

Unsigned long int 
Float 

Double 
Long double 

(Contd…) 
 MPI Basic Datatypes 
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Is MPI Large or Small? 
 

 MPI is large (125 Functions) 

• MPI’s extensive functionality requires many functions 

• Number of functions not necessarily a measure of complexity 
 

 MPI is small (6 Functions) 

• Many parallel programs can be written with just 6 basic functions 
 

 MPI is just right candidate for message passing 

• One can access flexibility when it is required 

• One need not master all parts of MPI to use it 

  Is MPI Large or Small? 
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The MPI Message Passing Interface Small or Large  

MPI can be small. 

One can begin programming with 6 MPI function calls 

MPI_INIT                          Initializes MPI                                                

MPI_COMM_SIZE           Determines number of processors      

MPI_COMM_RANK         Determines the label of the calling process  

MPI_SEND                      Sends a message                                   

MPI_RECV                      Receives a message                                   

MPI_FINALIZE                Terminates MPI      

MPI can be large 

One can utilize any of 125 functions in MPI.                

(Contd…) 
 Is MPI Large or Small? 
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MPI_Send (&buf,    count,     datatype,    dest,    tag,   MPI_COMM_WORLD)                                       

(Contd…) 

MPI Point-to-Point Communication Library Calls  

MPI Message Passing : Send       C - Language  

Subroutine 

Name 
Message 

Address 

Message 

Count 

Destination 

Process ID 
Message 

Data Type 

Message 

Tag 
Communicator 

  Anatomy of MPI Components in sending a message  

 Support Heterogeneous computing  

 Allow messages from non-contiguous,non-uniform memory sections  
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Collective Communications 

 The sending and/or receiving of messages to/from groups of 

processors.  

 A collective communication implies that all processors need 

participate in a global  communication operation. 

 Involves coordinated communication within a group of processes 

 No message tags used 

 All collective routines block until they are locally complete 

   MPI Collective Communications 

Source : Reference : [11], [12], [25],  [26] 
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 Communications involving a group of processes. 
 

 Called by all processes in a communicator. 
 

 Examples: 
 

• Barrier synchronization. 
 

• Broadcast, scatter, gather. 
 

• Global sum, global maximum, etc. 

   MPI Collective Communications 

(Contd…) 

 Two broad classes :  

• Data movement routines  

• Global computation routines 
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Characteristics of Collective Communication  

 
 Collective action over a communicator 

 

 All processes must communicate 

 

 Synchronization may or may not occur 

 

 All collective operations are blocking. 

 

 No tags. 

 

 Receive buffers must be exactly the right size 

   MPI Collective Communications 
(Contd…) 
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Collective Communications  
 

Communication is coordinated among a group of processes 
 

 Group can be constructed “by hand” with MPI group-manipulation 

routines or by using MPI topology-definition routines 
 

 Different communicators are used instead 
 

 No non-blocking collective operations 

                                                                                                                                                                         

(Contd…) 
   MPI Collective Communications 
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Collective Communication routines 
 

Three classes of collective operations: 
 

 Synchronization 
 

 Data movement  
 

 Collective computation 

(Contd…) 

   MPI Collective Communications 
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A P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 

A 

A 

A 

A 

Broadcast 

A P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 

A 

B 

C 

D 

Scatter 

B C D 

Gather  

Representation of collective data movement in MPI 

    MPI Collective Communications 
(Contd…) 
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A broadcast sends data from one process to all other processes. The 

content of the message to all processes (including itself) in the 

communicator .  The contents of the message is identified by the triple 

(Address, Count, Datatype).  

 For the root processes, this triple specifies both the send and receive 

buffer. For other processes, this triple specifies the receive buffer 
 

C: 

        int MPI_Bcast ( void *buffer, int count, MPI_Datatype datatype, 
    int root, MPI_Comm comm); 

Fortran: 

         MPI_Bcast (buffer, count, datatype, root,  comm, ierror) 

        <type> buffer(*)  

       integer count, datatype, root, comm, ierror  

(Contd…) 

    MPI Collective Communications :Broadcast  
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Get the data that resides on all processes and accumulate onto a single 

processes.   

The root process receives a personalized message from each of the n 

processes (including itself) 

Gather an integer array of size of 4 from each process 

(Contd…) 

    MPI Collective Communications :Gather  
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 Each process in comm send the contents of send-buffer to the 

process with rank root. The process with rank root concatenates the 

received data in the process rank order in recv-buffer. The receive 

arguments are significant only on process rank root. The argument 

recv_count indicates the number of items received from each 

process –not the total number received.  

       For the root process, it is identified by the triple (Recv Address, 

RecvCount, RecvDatatype). 

C: 

      int MPI_Gather( void *send_buffer, int send_count, MPI_Datatype  
                     send_type, void *recv_buffer, int recv_count,  
         MPI_Datatype recv_type, int root, MPI_Comm comm); 

(Contd…) 

    MPI Collective Communications :Gather  
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Gatterv 

  Each process in comm send the contents of different size of send-buffer to 

the process with rank root. The process with rank root concatenates the 

received data in the process rank order in recv-buffer. The receive 

arguments are significant only on process rank root. The argument 

recv_counts[ ] indicates the number of items received from each process – 

not the total number received. Extends the functionality of MPI_Gather by 

allowing different type signatures. Each process has different sizes of send-

buffer. Displacements[ ] indicates displacement vector  

  For the root process, it is identified by the triple (Recv Address, RecvCount, 

RecvDatatype). 

C: 

      int MPI_Gatherv( void *send_buffer, int send_count, MPI_Datatype  
                     send_type, void *recv_buffer, int recv_counts[ ],   

                      int displacements[  ],  MPI_Datatype recv_type,  

                                  int root, MPI_Comm comm); 

    MPI Collective Communications :Gatherv  
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Distribute a set of data from one process to all other processes.   

A scatter performs just the opposite operation of a gather. 

Scatter an integer array of  size 16 on 4 processors 

(Contd…) 

    MPI Collective Communications :Scatter 
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Scatter 

 The process with rank root distributes the contents of send-buffer 

among the processes. The contents of send-buffer are split into p 

segments each consisting of send_count elements. The first segment 

goes to process 0, the second to process 1, etc… The send arguments 

are significant only on process root.  

 C: 

       int  MPI_Scatter( void *send_buffer, int send_count, MPI_Datatype  
                       send_type, void *recv_buffer, int recv_count,  
                  MPI_Datatype recv_type, int root,MPI_Comm comm); 

 

(Contd…) 

    MPI Collective Communications :Scatter 
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Scatterv 

 The process with rank root distributes the contents of different send-buffer 

among the processes. The contents of send-buffer are split into different 

p segments each consisting of different array of send_counts[ ] elements. 

The first segment goes to process 0, the second to process 1, etc… The 

send arguments are significant only on process root. Extends the 

functionality of MPI_Scatter by allowing different type signatures. Each 

process has different sizes of recv-buffer. Displacements[ ] indicates 

displacement vector  

 

 C: 

       int  MPI_Scatterv( void *send_buffer, int send_counts[  ], 

                                    int displacements[  ], MPI_Datatype send_type,  

                                    void *recv_buffer, int recv_count,                      

                                     MPI_Datatype recv_type, int root, MPI_Comm comm); 

(Contd…) 
    MPI Collective Communications :Scatterv 
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All-to-All 

Performs a scatter and gather from all  four process to all other four 

processes. Every process accumulates the final values 

All-to-All operation for an integer array of size 8 on 4 processors 

MPI Collective Communications 
(Contd…) 
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Representation of collective data movement in MPI 
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P1 
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P2 

P3 

P0 

P1 

P2 

P3 
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A1 A2 A3 

B 
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B0 

B1 

B2 

B3 

C0 

C1 

C2 

C3 

D0 

D1 

D2 

D3 

MPI Collective Communications 

(Contd…) 
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MPI_Alltoall  
 

MPI_Alltoall (void* sendAddress, int SendCount,  

          MPI_Datatype  SendDatatype, void* RecvAddress,   

          int  RecvCount, MPI_Datatype RecvDatatype, MPI_Comm Comm); 

 

 

Every process sends a personalized message to each of the n processes, 
including itself. These n messages are originally stored in rank order in its 
send buffer.Looking at the communication from another way, every process 
receive a message from each of the n processes 
 

These messages “n” messages are concatenated in rank order, and stored 
in the receive buffer.  These “n” messages are concatenated in rank order, 
and stored in the receive buffer. Note that a total exchange is equivalent to 
n gathers, each by a different process. 

    MPI Collective Communications : Total Exchange 
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    MPI Collective Communications : Total Exchange 

MPI_Alltoallv  
 

MPI_Alltoall (void* sendAddress,  

          int SendCounts[  ],  

           int send _displacements[  ], 

           MPI_Datatype  SendDatatype, void* RecvAddress,   

           int  RecvCount[  ],  

           int recv_displacements[  ],  

           MPI_Datatype RecvDatatype, MPI_Comm Comm); 
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   MPI Collective Communications 

Type Routine Functionality 

Data Movement MPI_Bcast 

MPI_Gather 

MPI_Gatherv 

MPI_Allgather 

MPI_Allgatherv 

One-to-all, Identical Message 

All-to-One, Personalized messages 

A generalization of MPI_Gather 

A generalization of MPI_Gather 

A generalization of MPI_Allgather 

MPI_Scatter 

MPI_Scatterv 

One-to-all Personalized messages 

A generalization of MPI_Scatter 

MPI_Alltoall 

MPI_Scatterv 

All-to-All, personalized message 

A generalization of MPI_Alltoall 
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Characteristics of Collective Communications  
 

 Collective action over a communicator 

 

 All processes must communicate 

 

 Synchronization may or may not occur 

 

 All collective operations are blocking. 

 

 No tags. 

 

 Receive buffers must be exactly the right size 

MPI Collective Communications 
(Contd…) 
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Collective Communications  
 

Communication is coordinated among a group of processes 
 

 Group can be constructed “by hand” with MPI group-manipulation 

routines or by using MPI topology-definition routines 
 

 Different communicators are used instead 
 

 No non-blocking collective operations 

                                                                                                                                                                         

MPI Collective Communications 

(Contd…) 



Multi-Core Processors : MPI 1.0 Overview Part-II  35 C-DAC   hyPACK-2013 

Type Routine Functionality 

Aggregation  MPI_Reduce 

MPI_Allreduce 

MPI_Reduce_scatter 

MPI_Scan 

All-to-one reduction, All-to-One,  

A generalization of MPI_Reduce 

A generalization of MPI_Reduce 

All-to-all parallel prefix 

Synchronization  MPI_Barrier  Barrier Synchronization 

Other Collective Library Cells MPI Collective Communications and Computations 
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P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 

  A0+A1+A2+A3 

A0 

Reduce (A,B,P2,MAX) 

Reduce (A,B,P1,SUM) A1 

A2 

A3 

A0 

A1 

A2 

A3 

P0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 

Representation of collective data movement in MPI 

   MAXIMUM 

(Contd…) 

Other Collective Library Cells MPI Collective Communications and Computations 
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Fortran 
 

 MPI_Reduce (sendbuf, recvbuf, count, datatype, op,   

            root, comm, ierror)  

              <type> sendbuf (*), recvbuf (*)                                                  

 integer count, datatype, op, root, comm,ierror         

C       

             int  MPI_Reduce (void* operand, void* result, int count,                   

                              MPI_Datatype datatype, MPI_Op op,                            

                              int root, MPI_Comm comm) ;                   

(Contd…) 

Other Collective Library Cells MPI Collective Communications and Computations 

C       

             int  MPI_Allreduce(void* operand, void* result, int count,                   

                              MPI_Datatype datatype, MPI_Op op,     

      MPI_Comm comm) ;                   
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Barrier 

A barrier insures that all processes reach a specified location within the 

code before continuing. 

All processes in the communicator “Comm” synchronize with one 

another; I.e., they wait until processes execute their respective 

MPI_Barrier function. 
 

 

 C: 

   int MPI_Barrier (MPI_Comm comm); 
 

 Fortran: 
 

         MPI_barrier (comm, ierror) 

         integer comm, ierror 

(Contd…) 

Other Collective Library Cells MPI Collective Communications and Computations 
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Reduction 

A reduction compares or computes using a set of data stored on all 

processes and saves the final result on one specified process. 

Global Reduction (sum) of an integer array of size 4 on each 

process  and accumulate the same on process P1 

Other Collective Library Cells MPI Collective Communications and Computations 
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Global Reduction Operations  
 

 Used to compute a result involving data distributed over a 
group of processes. 

 MPI provides two types of aggregation : reduction and Scan.  
 

  Examples: 
 

 Global sum or product 
 

 Global maximum or minimum 
 

 Global user-defined operation 

(Contd…) 

Other Collective Library Cells MPI Collective Communications and Computations 
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Collective Computation Operations                                                                           

 MPI_LOR 

 MPI_LXOR 

Operation 

Logical and 

Logical or 

Logical exclusive or (xor) 

 MPI_BAND Bitwise AND 

 MPI_BOR Bitwise OR 

MPI_Name 

 MPI_LAND 

 MPI_BXOR Bitwise exclusive OR 

(Contd…) 

Other Collective Library Cells MPI Collective Communications and Computations 
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Collective Computation Operation                                                                                  

 MPI_MIN 

 MPI_PROD 

 MPI_SUM 

Operation 

Maximum 

Minimum 

Product 

Sum 

MPI Name 

MPI_MAX 

 MPI_MAXLOC 

 MPI_MAXLOC 

Maximum and location 

Maximum and location 

(Contd…) 

Other Collective Library Cells MPI Collective Communications and Computations 
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 All versions deliver results to all participating processes 

 V -version allow the chunks to have different non-uniform data 

sizes (Scatterv, Allgatherv, Gatherv) 

  All reduce, Reduce , ReduceScatter, and Scan take both built-in 

and user-defined combination functions 

Allgather Allgatherv Allreduce 

Alltoall Bcast Alltoallv 

Gather Reduce Gatherv 

Reduce Scatter Scan Scatter 

Scatterv 

Other Collective Library Cells MPI Collective Communications and Computations 

Source : Reference : [11], [12], [25],  [26] 



Multi-Core Processors : MPI 1.0 Overview Part-II  44 C-DAC   hyPACK-2013 

 Positives 
 

 MPI is De-facto standard for message-passing in a box  
 

 Performance was a high-priority in the design 
 

 Simplified sending message 
 

 Rich set of collective functions 
 

 Do not require any daemon to start application 
 

 No language binding issues  

 Features of MPI 
(Contd…) 
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 Positives 
 

 Best scaling seen in practice 
 

 Simple memory model 
 

 Simple to understand conceptually 
 

 Can send messages using any kind of data 
 

 Not limited to “shared -data” 

 Features of MPI 
(Contd…) 
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 MPI is De-facto standard for message-passing in a box  
 

 Rich set of Point-to-Point and Collective functions 
 

 No language binding issues  
 

 Scalability can be achieved as we increase the problem size 
 

 Performance tuning can be done  

  Conclusions 

Source : Reference : [11], [12], [25],  [26] 
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 Thank You  
   Any questions ? 


