
Multi-Core Processors : MPI 1.0 Overview Part-II 1 C-DAC hyPACK-2013

Lecture Topic:
Multi-Core Processors: MPI 1.0 Overview (Part-II)

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators
Power-Aware Computing – Performance of

Applications Kernels

Multi-Core Processors : MPI 1.0 Overview Part-II 2 C-DAC hyPACK-2013

 Review of MPI Point-to-Point Library Calls

 MPI library calls used in Example program

 MPI Collective Communication Library Calls

 MPI Collective Communication and Computations Library Calls

Introduction to Message Passing Interface (MPI)

Quick overview of what this Lecture is all about

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-II 3 C-DAC hyPACK-2013

Message-Passing Programming Paradigm : Processors are

connected using a message passing interconnection network.

Message Passing Architecture Model

 COMMUNICATION

NETWORK

P • • • •

M

P

M

P

M

P

M

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-II 4 C-DAC hyPACK-2013

Basic steps in an MPI program

 Initialize for communications

 Communicate between processors

 Exit in a “clean” fashion from the message-passing system when

done communicating.

MPI Basics

Multi-Core Processors : MPI 1.0 Overview Part-II 5 C-DAC hyPACK-2013

Blocking Sending and Receiving messages

 Process 0 Process 1

 Send Recv

 Fundamental questions answered

 To whom is data sent?

 What is sent?

 How does the receiver identify it?

MPI Send and Receive

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-II 6 C-DAC hyPACK-2013

MPI Message Passing : Send

Fortran

MPI_SEND (buf, count, datatype, dest, tag, comm, ierror)

[IN buf] initial address of send buffer (choice)

[IN count] number of elements in send buffer (nonnegative integer)

[IN datatype] datatype of each send buffer element (handle)

[IN dest] rank of destination (integer)

[IN tag] message tag (integer)

[IN comm] communicator (handle)

C

MPI_Send (void *Message, int count, MPI_Datatype datatype, int

 destination, int tag, Mpi_Comm comm);

(Contd…)
MPI Point-to-Point Communication

Multi-Core Processors : MPI 1.0 Overview Part-II 7 C-DAC hyPACK-2013

MPI Message Passing : Receive

Fortran
MPI_RECV (buf, count, datatype, source, tag, comm, status)

[OUT buf] initial address of receive buffer (choice)

[IN count] number of elements in receive buffer (integer)

[IN datatype] datatype of each receive buffer element (handle)

[IN source] rank of source (integer)

[IN tag] message tag (integer)

[IN comm] communicator (handle)

[OUT status] status object (Status)

C

MPI_Recv (void* buf, int count, MPI_Datatype datatype, int source,

 int tag, MPI_Comm comm, MPI_Status *status);

(Contd…)
MPI Point-to-Point Communication

Multi-Core Processors : MPI 1.0 Overview Part-II 8 C-DAC hyPACK-2013

MPI_Send and MPI_Recv

 MPI provides for point-to-point communication between pair of

processes

 Message selectively is by rank and message tag

 Rank and tag are interpreted relative to the scope of the

communication

 The scope is specified by the communicator

 Rank and tag may be wildcarded

 The components of a communicator may not be wildcarded

(Contd…)
 MPI Point-to-Point Communication

Multi-Core Processors : MPI 1.0 Overview Part-II 9 C-DAC hyPACK-2013

Point-to-Point Communications

The sending and receiving of messages between pairs of processors.

 BLOCKING SEND: returns only after the corresponding RECEIVE

operation has been issued and the message has been transferred.

 MPI_Send

 BLOCKING RECEIVE: returns only after the corresponding SEND

has been issued and the message has been received.

 MPI_Recv

 MPI Blocking Send and Receive
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-II 10 C-DAC hyPACK-2013

MPI Datatype Fortran Datatype

MPI_INTEGER INTEGER
MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE

MPI_PACKED

MPI Basic Datatypes

MPI Basic Datatypes - Fortran

Multi-Core Processors : MPI 1.0 Overview Part-II 11 C-DAC hyPACK-2013

MPI Basic Datatypes - C

MPI Datatype

MPI_CHAR

MPI_SHORT

MPI_INT

MPI_LONG

MPI_UNSIGNED_CHAR

MPI_UNSIGNED_SHORT

MPI_UNSIGNED

MPI_UNSIGNED_LONG

MPI_FLOAT

MPI_DOUBLE

MPI_LONG_DOUBLE

MPI_BYTE

MPI_PACKED

C datatype

Signed char

 Signed short int

Signed int

Signed long int
Unsigned char

Unsigned short int

Unsigned int

Unsigned long int
Float

Double
Long double

(Contd…)
 MPI Basic Datatypes

Multi-Core Processors : MPI 1.0 Overview Part-II 12 C-DAC hyPACK-2013

Is MPI Large or Small?

 MPI is large (125 Functions)

• MPI’s extensive functionality requires many functions

• Number of functions not necessarily a measure of complexity

 MPI is small (6 Functions)

• Many parallel programs can be written with just 6 basic functions

 MPI is just right candidate for message passing

• One can access flexibility when it is required

• One need not master all parts of MPI to use it

 Is MPI Large or Small?

Multi-Core Processors : MPI 1.0 Overview Part-II 13 C-DAC hyPACK-2013

The MPI Message Passing Interface Small or Large

MPI can be small.

One can begin programming with 6 MPI function calls

MPI_INIT Initializes MPI

MPI_COMM_SIZE Determines number of processors

MPI_COMM_RANK Determines the label of the calling process

MPI_SEND Sends a message

MPI_RECV Receives a message

MPI_FINALIZE Terminates MPI

MPI can be large

One can utilize any of 125 functions in MPI.

(Contd…)
 Is MPI Large or Small?

Multi-Core Processors : MPI 1.0 Overview Part-II 14 C-DAC hyPACK-2013

MPI_Send (&buf, count, datatype, dest, tag, MPI_COMM_WORLD)

(Contd…)

MPI Point-to-Point Communication Library Calls

MPI Message Passing : Send C - Language

Subroutine

Name
Message

Address

Message

Count

Destination

Process ID
Message

Data Type

Message

Tag
Communicator

 Anatomy of MPI Components in sending a message

 Support Heterogeneous computing

 Allow messages from non-contiguous,non-uniform memory sections

Multi-Core Processors : MPI 1.0 Overview Part-II 15 C-DAC hyPACK-2013

Collective Communications

 The sending and/or receiving of messages to/from groups of

processors.

 A collective communication implies that all processors need

participate in a global communication operation.

 Involves coordinated communication within a group of processes

 No message tags used

 All collective routines block until they are locally complete

 MPI Collective Communications

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-II 16 C-DAC hyPACK-2013

 Communications involving a group of processes.

 Called by all processes in a communicator.

 Examples:

• Barrier synchronization.

• Broadcast, scatter, gather.

• Global sum, global maximum, etc.

 MPI Collective Communications

(Contd…)

 Two broad classes :

• Data movement routines

• Global computation routines

Multi-Core Processors : MPI 1.0 Overview Part-II 17 C-DAC hyPACK-2013

Characteristics of Collective Communication

 Collective action over a communicator

 All processes must communicate

 Synchronization may or may not occur

 All collective operations are blocking.

 No tags.

 Receive buffers must be exactly the right size

 MPI Collective Communications
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-II 18 C-DAC hyPACK-2013

Collective Communications

Communication is coordinated among a group of processes

 Group can be constructed “by hand” with MPI group-manipulation

routines or by using MPI topology-definition routines

 Different communicators are used instead

 No non-blocking collective operations

(Contd…)
 MPI Collective Communications

Multi-Core Processors : MPI 1.0 Overview Part-II 19 C-DAC hyPACK-2013

Collective Communication routines

Three classes of collective operations:

 Synchronization

 Data movement

 Collective computation

(Contd…)

 MPI Collective Communications

Multi-Core Processors : MPI 1.0 Overview Part-II 20 C-DAC hyPACK-2013

A P0

P1

P2

P3

P0

P1

P2

P3

A

A

A

A

Broadcast

A P0

P1

P2

P3

P0

P1

P2

P3

A

B

C

D

Scatter

B C D

Gather

Representation of collective data movement in MPI

 MPI Collective Communications
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-II 21 C-DAC hyPACK-2013

A broadcast sends data from one process to all other processes. The

content of the message to all processes (including itself) in the

communicator . The contents of the message is identified by the triple

(Address, Count, Datatype).

 For the root processes, this triple specifies both the send and receive

buffer. For other processes, this triple specifies the receive buffer

C:

 int MPI_Bcast (void *buffer, int count, MPI_Datatype datatype,
 int root, MPI_Comm comm);

Fortran:

 MPI_Bcast (buffer, count, datatype, root, comm, ierror)

 <type> buffer(*)

 integer count, datatype, root, comm, ierror

(Contd…)

 MPI Collective Communications :Broadcast

Multi-Core Processors : MPI 1.0 Overview Part-II 22 C-DAC hyPACK-2013

Get the data that resides on all processes and accumulate onto a single

processes.

The root process receives a personalized message from each of the n

processes (including itself)

Gather an integer array of size of 4 from each process

(Contd…)

 MPI Collective Communications :Gather

Multi-Core Processors : MPI 1.0 Overview Part-II 23 C-DAC hyPACK-2013

 Each process in comm send the contents of send-buffer to the

process with rank root. The process with rank root concatenates the

received data in the process rank order in recv-buffer. The receive

arguments are significant only on process rank root. The argument

recv_count indicates the number of items received from each

process –not the total number received.

 For the root process, it is identified by the triple (Recv Address,

RecvCount, RecvDatatype).

C:

 int MPI_Gather(void *send_buffer, int send_count, MPI_Datatype
 send_type, void *recv_buffer, int recv_count,
 MPI_Datatype recv_type, int root, MPI_Comm comm);

(Contd…)

 MPI Collective Communications :Gather

Multi-Core Processors : MPI 1.0 Overview Part-II 24 C-DAC hyPACK-2013

Gatterv

 Each process in comm send the contents of different size of send-buffer to

the process with rank root. The process with rank root concatenates the

received data in the process rank order in recv-buffer. The receive

arguments are significant only on process rank root. The argument

recv_counts[] indicates the number of items received from each process –

not the total number received. Extends the functionality of MPI_Gather by

allowing different type signatures. Each process has different sizes of send-

buffer. Displacements[] indicates displacement vector

 For the root process, it is identified by the triple (Recv Address, RecvCount,

RecvDatatype).

C:

 int MPI_Gatherv(void *send_buffer, int send_count, MPI_Datatype
 send_type, void *recv_buffer, int recv_counts[],

 int displacements[], MPI_Datatype recv_type,

 int root, MPI_Comm comm);

 MPI Collective Communications :Gatherv

Multi-Core Processors : MPI 1.0 Overview Part-II 25 C-DAC hyPACK-2013

Distribute a set of data from one process to all other processes.

A scatter performs just the opposite operation of a gather.

Scatter an integer array of size 16 on 4 processors

(Contd…)

 MPI Collective Communications :Scatter

Multi-Core Processors : MPI 1.0 Overview Part-II 26 C-DAC hyPACK-2013

Scatter

 The process with rank root distributes the contents of send-buffer

among the processes. The contents of send-buffer are split into p

segments each consisting of send_count elements. The first segment

goes to process 0, the second to process 1, etc… The send arguments

are significant only on process root.

 C:

 int MPI_Scatter(void *send_buffer, int send_count, MPI_Datatype
 send_type, void *recv_buffer, int recv_count,
 MPI_Datatype recv_type, int root,MPI_Comm comm);

(Contd…)

 MPI Collective Communications :Scatter

Multi-Core Processors : MPI 1.0 Overview Part-II 27 C-DAC hyPACK-2013

Scatterv

 The process with rank root distributes the contents of different send-buffer

among the processes. The contents of send-buffer are split into different

p segments each consisting of different array of send_counts[] elements.

The first segment goes to process 0, the second to process 1, etc… The

send arguments are significant only on process root. Extends the

functionality of MPI_Scatter by allowing different type signatures. Each

process has different sizes of recv-buffer. Displacements[] indicates

displacement vector

 C:

 int MPI_Scatterv(void *send_buffer, int send_counts[],

 int displacements[], MPI_Datatype send_type,

 void *recv_buffer, int recv_count,

 MPI_Datatype recv_type, int root, MPI_Comm comm);

(Contd…)
 MPI Collective Communications :Scatterv

Multi-Core Processors : MPI 1.0 Overview Part-II 28 C-DAC hyPACK-2013

All-to-All

Performs a scatter and gather from all four process to all other four

processes. Every process accumulates the final values

All-to-All operation for an integer array of size 8 on 4 processors

MPI Collective Communications
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-II 29 C-DAC hyPACK-2013

Representation of collective data movement in MPI

A P0

P1

P2

P3

P0

P1

P2

P3

A

A

A

A

All gather

A0 P0

P1

P2

P3

P0

P1

P2

P3

All to All

A1 A2 A3

B

C

D

B C D

B C D

B C D

B C D

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

D0

D1

D2

D3

MPI Collective Communications

(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-II 30 C-DAC hyPACK-2013

MPI_Alltoall

MPI_Alltoall (void* sendAddress, int SendCount,

 MPI_Datatype SendDatatype, void* RecvAddress,

 int RecvCount, MPI_Datatype RecvDatatype, MPI_Comm Comm);

Every process sends a personalized message to each of the n processes,
including itself. These n messages are originally stored in rank order in its
send buffer.Looking at the communication from another way, every process
receive a message from each of the n processes

These messages “n” messages are concatenated in rank order, and stored
in the receive buffer. These “n” messages are concatenated in rank order,
and stored in the receive buffer. Note that a total exchange is equivalent to
n gathers, each by a different process.

 MPI Collective Communications : Total Exchange

Multi-Core Processors : MPI 1.0 Overview Part-II 31 C-DAC hyPACK-2013

 MPI Collective Communications : Total Exchange

MPI_Alltoallv

MPI_Alltoall (void* sendAddress,

 int SendCounts[],

 int send _displacements[],

 MPI_Datatype SendDatatype, void* RecvAddress,

 int RecvCount[],

 int recv_displacements[],

 MPI_Datatype RecvDatatype, MPI_Comm Comm);

Multi-Core Processors : MPI 1.0 Overview Part-II 32 C-DAC hyPACK-2013

 MPI Collective Communications

Type Routine Functionality

Data Movement MPI_Bcast

MPI_Gather

MPI_Gatherv

MPI_Allgather

MPI_Allgatherv

One-to-all, Identical Message

All-to-One, Personalized messages

A generalization of MPI_Gather

A generalization of MPI_Gather

A generalization of MPI_Allgather

MPI_Scatter

MPI_Scatterv

One-to-all Personalized messages

A generalization of MPI_Scatter

MPI_Alltoall

MPI_Scatterv

All-to-All, personalized message

A generalization of MPI_Alltoall

Multi-Core Processors : MPI 1.0 Overview Part-II 33 C-DAC hyPACK-2013

Characteristics of Collective Communications

 Collective action over a communicator

 All processes must communicate

 Synchronization may or may not occur

 All collective operations are blocking.

 No tags.

 Receive buffers must be exactly the right size

MPI Collective Communications
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-II 34 C-DAC hyPACK-2013

Collective Communications

Communication is coordinated among a group of processes

 Group can be constructed “by hand” with MPI group-manipulation

routines or by using MPI topology-definition routines

 Different communicators are used instead

 No non-blocking collective operations

MPI Collective Communications

(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-II 35 C-DAC hyPACK-2013

Type Routine Functionality

Aggregation MPI_Reduce

MPI_Allreduce

MPI_Reduce_scatter

MPI_Scan

All-to-one reduction, All-to-One,

A generalization of MPI_Reduce

A generalization of MPI_Reduce

All-to-all parallel prefix

Synchronization MPI_Barrier Barrier Synchronization

Other Collective Library Cells MPI Collective Communications and Computations

Multi-Core Processors : MPI 1.0 Overview Part-II 36 C-DAC hyPACK-2013

P0

P1

P2

P3

P0

P1

P2

P3

 A0+A1+A2+A3

A0

Reduce (A,B,P2,MAX)

Reduce (A,B,P1,SUM) A1

A2

A3

A0

A1

A2

A3

P0

P1

P2

P3

P0

P1

P2

P3

Representation of collective data movement in MPI

 MAXIMUM

(Contd…)

Other Collective Library Cells MPI Collective Communications and Computations

Multi-Core Processors : MPI 1.0 Overview Part-II 37 C-DAC hyPACK-2013

Fortran

 MPI_Reduce (sendbuf, recvbuf, count, datatype, op,

 root, comm, ierror)

 <type> sendbuf (*), recvbuf (*)

 integer count, datatype, op, root, comm,ierror

C

 int MPI_Reduce (void* operand, void* result, int count,

 MPI_Datatype datatype, MPI_Op op,

 int root, MPI_Comm comm) ;

(Contd…)

Other Collective Library Cells MPI Collective Communications and Computations

C

 int MPI_Allreduce(void* operand, void* result, int count,

 MPI_Datatype datatype, MPI_Op op,

 MPI_Comm comm) ;

Multi-Core Processors : MPI 1.0 Overview Part-II 38 C-DAC hyPACK-2013

Barrier

A barrier insures that all processes reach a specified location within the

code before continuing.

All processes in the communicator “Comm” synchronize with one

another; I.e., they wait until processes execute their respective

MPI_Barrier function.

 C:

 int MPI_Barrier (MPI_Comm comm);

 Fortran:

 MPI_barrier (comm, ierror)

 integer comm, ierror

(Contd…)

Other Collective Library Cells MPI Collective Communications and Computations

Multi-Core Processors : MPI 1.0 Overview Part-II 39 C-DAC hyPACK-2013

Reduction

A reduction compares or computes using a set of data stored on all

processes and saves the final result on one specified process.

Global Reduction (sum) of an integer array of size 4 on each

process and accumulate the same on process P1

Other Collective Library Cells MPI Collective Communications and Computations

Multi-Core Processors : MPI 1.0 Overview Part-II 40 C-DAC hyPACK-2013

Global Reduction Operations

 Used to compute a result involving data distributed over a
group of processes.

 MPI provides two types of aggregation : reduction and Scan.

 Examples:

 Global sum or product

 Global maximum or minimum

 Global user-defined operation

(Contd…)

Other Collective Library Cells MPI Collective Communications and Computations

Multi-Core Processors : MPI 1.0 Overview Part-II 41 C-DAC hyPACK-2013

Collective Computation Operations

 MPI_LOR

 MPI_LXOR

Operation

Logical and

Logical or

Logical exclusive or (xor)

 MPI_BAND Bitwise AND

 MPI_BOR Bitwise OR

MPI_Name

 MPI_LAND

 MPI_BXOR Bitwise exclusive OR

(Contd…)

Other Collective Library Cells MPI Collective Communications and Computations

Multi-Core Processors : MPI 1.0 Overview Part-II 42 C-DAC hyPACK-2013

Collective Computation Operation

 MPI_MIN

 MPI_PROD

 MPI_SUM

Operation

Maximum

Minimum

Product

Sum

MPI Name

MPI_MAX

 MPI_MAXLOC

 MPI_MAXLOC

Maximum and location

Maximum and location

(Contd…)

Other Collective Library Cells MPI Collective Communications and Computations

Multi-Core Processors : MPI 1.0 Overview Part-II 43 C-DAC hyPACK-2013

 All versions deliver results to all participating processes

 V -version allow the chunks to have different non-uniform data

sizes (Scatterv, Allgatherv, Gatherv)

 All reduce, Reduce , ReduceScatter, and Scan take both built-in

and user-defined combination functions

Allgather Allgatherv Allreduce

Alltoall Bcast Alltoallv

Gather Reduce Gatherv

Reduce Scatter Scan Scatter

Scatterv

Other Collective Library Cells MPI Collective Communications and Computations

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-II 44 C-DAC hyPACK-2013

 Positives

 MPI is De-facto standard for message-passing in a box

 Performance was a high-priority in the design

 Simplified sending message

 Rich set of collective functions

 Do not require any daemon to start application

 No language binding issues

 Features of MPI
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-II 45 C-DAC hyPACK-2013

 Positives

 Best scaling seen in practice

 Simple memory model

 Simple to understand conceptually

 Can send messages using any kind of data

 Not limited to “shared -data”

 Features of MPI
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-II 46 C-DAC hyPACK-2013

 MPI is De-facto standard for message-passing in a box

 Rich set of Point-to-Point and Collective functions

 No language binding issues

 Scalability can be achieved as we increase the problem size

 Performance tuning can be done

 Conclusions

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-II 47 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : MPI 1.0 Overview Part-II 48 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : MPI 1.0 Overview Part-II 49 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : MPI 1.0 Overview Part-II 50 C-DAC hyPACK-2013

 Thank You
 Any questions ?

