
Multi-Core Processors : MPI 1.0 Overview Part-I 1 C-DAC hyPACK-2013

Lecture Topic:
Multi-Core Processors: MPI 1.0 Overview (Part-I)

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators
Power-Aware Computing – Performance of

Applications Kernels

Multi-Core Processors : MPI 1.0 Overview Part-I 2 C-DAC hyPACK-2013

 Basics of MPI

 How to compile and execute MPI programs?

 MPI library calls used in Example program

 MPI point-to-point communication

Introduction to Message Passing Interface (MPI)

Quick overview of what this Lecture is all about

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-I 3 C-DAC hyPACK-2013

1. Deals with the principles of parallel programming by passing

messages among processing nodes.

2. Understand the effect of different MPI Functions that accomplish

the same communication

3. Understand how MPI implementation work

4. Know how to use different MPI functions to solve performance

problems

5. Understanding the way in which the different MPI operations are

implemented is critical in tuning for performance

6. Other Message Passing Libraries : PVM

MPI Goals

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-I 4 C-DAC hyPACK-2013

Message-Passing Programming Paradigm : Processors are

connected using a message passing interconnection network.

Message Passing Architecture Model

 COMMUNICATION

NETWORK

P • • • •

M

P

M

P

M

P

M

 On most Parallel Systems, the processes involved in the execution

of a parallel program are identified by a sequence of non-negative

integers. If there are p processes executing a program, they will

have ranks 0, 1,2, ……., p-1.

Multi-Core Processors : MPI 1.0 Overview Part-I 5 C-DAC hyPACK-2013

(Contd…)

Information about MPI

 MPI Forum – A different approach to developing a standard for

programming parallel computing systems.

 The foundation of MPI library is a small group of functions that

can be used to achieve parallelism by message-passing

 A message passing function that explicitly transmits data from

one process to another.

 Message Passing programs can be used to create extremely

efficient parallel programs.

 Difficult to design and develop programs using message passing

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-I 6 C-DAC hyPACK-2013

Where to use MPI ?

 You need a portable parallel program

 You are writing a parallel Library

 You have irregular data relationships that do not fit a data parallel

model

(Contd…)

Information about MPI

Why learn MPI?

 Portable

 Expressive

 Good way to learn about subtle issues in parallel computing

 Universal acceptance

Multi-Core Processors : MPI 1.0 Overview Part-I 7 C-DAC hyPACK-2013

 A message-passing library specification

 Message-passing model

 Not a compiler specification;

 Not a specific product

 Used for parallel computers, clusters, and heterogeneous networks

as a message passing library

 Designed to permit the development of parallel software libraries

 Designed to provide access to advanced parallel hardware for

 End users

 Library writers

 Tool developers

What Is MPI

Multi-Core Processors : MPI 1.0 Overview Part-I 8 C-DAC hyPACK-2013

Why Is A Standard Needed?

 Portability and Ease-of-use

 Provides hardware vendors with well-defined set of routines to

implement efficiently

 Pre-requisite for the development of software industry

(Contd…)

Information about MPI

 MPI is a standard specification for a library of functions developed

by MPI forum, a broadly based consortium of parallel computer

vendors, library writers, and application specialists.

 It is adopted by all parallel computer vendors.

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-I 9 C-DAC hyPACK-2013

The Message Passing Abstraction

Local process

 Address space

Process P

Local process

 Address space

Process Q

Address X
Address Y Send X,Q, t

Receive Y,P,t

Match

User-Level Send/receive message-passing abstraction : A data transfer from

one local address space to another occurs when a send to particular processes

matches with a receive posted by that process

Multi-Core Processors : MPI 1.0 Overview Part-I 10 C-DAC hyPACK-2013

Is MPI Large or Small?

 MPI is large (125 Functions)

• MPI’s extensive functionality requires many functions

• Number of functions not necessarily a measure of complexity

 MPI is small (6 Functions)

• Many parallel programs can be written with just 6 basic functions

 MPI is just right candidate for message passing

• One can access flexibility when it is required

• One need not master all parts of MPI to use it

 Is MPI Large or Small?

Multi-Core Processors : MPI 1.0 Overview Part-I 11 C-DAC hyPACK-2013

The Message Passing Abstraction

Local process

 Address space

Process P1

If (condition)

{

…..

Compute

}

Else

{

Communicate

}

Compute Function A

If (Rank = 3)

{

Communicate

Else

{

Compute

}

STOP

Local process

 Address space

Process P2

If (condition)

{

 Compute

Compute

}

Else

{

Communicate

}

Compute Function A

If (Rank = 1)

{

Communicate

Else

{

Compute

}

STOP

Local process

 Address space

Process P3

If (condition)

{

Communciate

Compute

}

Else

{

Communicate

}

Compute Function A

If (Rank = 3)

{

Compute

Else

{

Communicate

}

STOP

Multi-Core Processors : MPI 1.0 Overview Part-I 12 C-DAC hyPACK-2013

1. Compile, Linking and execution of your C or FORTRAN Program with

MPI libraries on the system. The details of this, depend on the system

you're using.

2. Although details of what happens when the program is executed vary

from system to system, the essentials are the same on all systems,

provided we run one process on each processor.

 The user issues a directive to the Operating System that has the

effect of placing a copy of the executable program on each

processor.

 Each processor begins execution of its copy of the executable.

 Different process can execute different statements by branching

within the program based on their process ranks

MPI Program – Compilation & Execution

Multi-Core Processors : MPI 1.0 Overview Part-I 13 C-DAC hyPACK-2013

Example : Process P sends a message contained in variable M to process

Q, which receives the message into its variable S.

Abstraction :Send and receive buffers in message passing

The variable M is often called the send message buffer (or send buffer),and

S is called the receive message buffer (or receive buffer)

Process P :

 M=10;

L1 : send M to Q

L2 : M=20;

 goto L1;

Process Q :

 S= 75;

L1 : receive S from P

L2 : X = S+1;

Multi-Core Processors : MPI 1.0 Overview Part-I 14 C-DAC hyPACK-2013

The Message-Passing Model – Message Passing Modes

Interconnection

network

Processors

Memory

Processors

Memory

Processors

Memory

Processors

Memory

 How many processes are involved ?

 How are the processes synchronized ?

 How are communication buffers managed ?

 Blocking Send /Receive

 Non-Blocking Send/Receive

 Synchronous Message Passing

Multi-Core Processors : MPI 1.0 Overview Part-I 15 C-DAC hyPACK-2013

What is SPMD ?

 Single Program, Multiple Data

• Same program runs everywhere

• Restriction on the general message-passing model

• Some vendors only support SPMD parallel programs

SPMD Program

Multi-Core Processors : MPI 1.0 Overview Part-I 16 C-DAC hyPACK-2013

Evaluating General Message

Passing with SPMD :C program

main (int args, char **argv)

{

 if (process is to become a controller process)

 {

 Controller (/* Arguments /*);

 }

 else

 {

 Worker (/* Arguments /*);

 }

}

SPMD Program
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-I 17 C-DAC hyPACK-2013

Evaluating General Message Passing with SPMD : Fortran

PROGRAM
 IF (process is to become a controller process) THEN

 CALL CONTROLLER (/* Arguments /*)
 ELSE

 CALL WORKER (/* Arguments /*)
 ENDIF

END

SPMD/MPMD Program
(Contd…)

What is MPMD (Non-SPMD)?

 Different programs run on different nodes.

 If one program controls the others then the controlling program is

called the Master and the others are called the slaves.

Multi-Core Processors : MPI 1.0 Overview Part-I 18 C-DAC hyPACK-2013

How to compile and execute MPI program?

Compiling

 On some machines, there is a special command to insure that the

program links the proper MPI libraries.

 mpif77 program.f mpicc program.c

 Compiling a code : Using Makefile

 Include all files for program, appropriate paths to link MPI

 libraries

Used for SPMD and Non-SPMD programs

(Note that this will differ with different MPI libraries).

Compile and Execute MPI programs
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-I 19 C-DAC hyPACK-2013

How to compile and execute MPI program?

 Execution : mpirun -np 4 a.out

 (To run a program across multiple machines; np is the number of

processes)

 Execution

 Create ch_p4 procgroup file (File contains users account

name, access to the executable of MPI program, number of
processes used, for example run.pg)

 Execute the command make (Makefile generates

executable (say run)

 Type run on command line

(Contd…)

Compile and Execute MPI programs

Multi-Core Processors : MPI 1.0 Overview Part-I 20 C-DAC hyPACK-2013

Basic steps in an MPI program

 Initialize for communications

 Communicate between processors

 Exit in a “clean” fashion from the message-passing system when

done communicating.

MPI Basics

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-I 21 C-DAC hyPACK-2013

Format of MPI Calls

C Language Bindings

 Return_integer = MPI_Xxxxx(parameter, ...);

 Return_integer is a return code and is type integer. Upon success,

it is set to MPI_SUCCESS.

 Note that case is important

 MPI must be capitalized as must be the first character after the

underscore. Everything after that must be lower case.

 C programs should include the file mpi.h which contains

definitions for MPI constants and functions

MPI Basics
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-I 22 C-DAC hyPACK-2013

Format of MPI Calls

Fortran Language Buildings

 Call MPI_XXXXX(parameter,..., ierror)

 or

 call mpi_xxxxx(parameter,..., ierror)

 Instead of the function returning with an error code, as in C, the

Fortran versions of MPI routines usually have one additional
parameter in the calling list, ierror, which is the return code.

Upon success, ierror is set to MPI_SUCCESS.

 Note that case is not important

 Fortran programs should include the file mpif.h which contains

definitions for MPI constants and functions

MPI Basics
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-I 23 C-DAC hyPACK-2013

Exceptions to the MPI call formats are timing routines

 Timing routines

 MPI_WTIME and MPI_WTICK are functions for both C

and Fortran

 Return double-precision real values.

 These are not subroutine calls

Fortran

 Double precision MPI_WTIME()

C

 Double precision MPI_Wtime(void);

MPI Basics
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-I 24 C-DAC hyPACK-2013

MPI Messages

 Message : data (3 parameters) + envelope (3 parameters)

Data : startbuf, count, datatype

• Startbuf: address where the data starts

• Count: number of elements (items) of data in the message

Envelope : dest, tag, comm

• Destination or Source: Sending or Receiving processes

• Tag: Integer to distinguish messages

Communicator

 The communicator is communication “universe.”

 Messages are sent or received within a given “universe.”

 The default communicator is MPI_COMM_WORLD

MPI Basics

Multi-Core Processors : MPI 1.0 Overview Part-I 25 C-DAC hyPACK-2013

Initializing MPI

 Must be first routine called.

 C

 int MPI_Init(int *argc,char ***argv);

 Fortran

 MPI_INIT(IERROR)

 integer IERROR

(Contd…)

MPI Basics

Multi-Core Processors : MPI 1.0 Overview Part-I 26 C-DAC hyPACK-2013

MPI_COMM_WORLD communicator

A communicator is MPI’s mechanism for establishing individual

communication “universe.”

(Contd…)
MPI Basics

Multi-Core Processors : MPI 1.0 Overview Part-I 27 C-DAC hyPACK-2013

MPI Message Passing Basics

Questions :

 What is my process id number ?

MPI_COMM_RANK (Rank starts from the integer value 0 to ….)

 Fortran

 call MPI_COMM_RANK (comm, rank, ierror)

 integer comm, rank, ierror

 C

 int MPI_Comm_rank (MPI_Comm comm, int *rank)

(Contd…)

MPI Basics

Multi-Core Processors : MPI 1.0 Overview Part-I 28 C-DAC hyPACK-2013

MPI Message Passing Basics

Questions :

 How many processes are contained within a communicator?

 How many processes am I using?

 MPI_COMM_SIZE

 Fortran

 call MPI_COMM_SIZE (comm, size, ierror)

 C

 int MPI_Comm_size (MPI_Comm comm, int *size)

(Contd…)

MPI Basics

Multi-Core Processors : MPI 1.0 Overview Part-I 29 C-DAC hyPACK-2013

Exiting MPI

 C

 int MPI_Finalize()

 Fortran

 MPI_FINALIZE(IERROR)

 INTEGER IERROR

Note : Must be called last by all processes.

(Contd…)
MPI Basics

Multi-Core Processors : MPI 1.0 Overview Part-I 30 C-DAC hyPACK-2013

What makes an MPI Program ?

 Include files

 mpi.h (C)

 mpif.h (Fortran)

 Initiation of MPI

 MPI_INIT

 Completion of MPI

 MPI_FINALIZE

What makes an MPI Program ?

Multi-Core Processors : MPI 1.0 Overview Part-I 31 C-DAC hyPACK-2013

Sending and Receiving messages

 Process 0 Process 1

 Send Recv

Fundamental questions answered

 To whom is data sent?

 What is sent?

 How does the receiver identify it?

MPI Send and MPI Receive Library Calls

Multi-Core Processors : MPI 1.0 Overview Part-I 32 C-DAC hyPACK-2013

 Communication between two processes

 Source process sends message to destination process

 Communication takes place within a communicator

 Destination process is identified by its rank in the communicator

Information on MPI Send and MPI Recv

MPI Point-to-Point Communication Library Call

Multi-Core Processors : MPI 1.0 Overview Part-I 33 C-DAC hyPACK-2013

MPI Message Passing : Send

Fortran

MPI_SEND (buf, count, datatype, dest, tag, comm, ierror)

[IN buf] initial address of send buffer (choice)

[IN count] number of elements in send buffer (nonnegative integer)

[IN datatype] datatype of each send buffer element (handle)

[IN dest] rank of destination (integer)

[IN tag] message tag (integer)

[IN comm] communicator (handle)

C

MPI_Send (void *Message, int count, MPI_Datatype datatype, int

 destination, int tag, Mpi_Comm comm);

(Contd…)

MPI Point-to-Point Communication Library Calls

Multi-Core Processors : MPI 1.0 Overview Part-I 34 C-DAC hyPACK-2013

MPI_Send (&buf, count, datatype, dest, tag, MPI_COMM_WORLD)

(Contd…)

MPI Point-to-Point Communication Library Calls

MPI Message Passing : Send C - Language

Subroutine

Name
Message

Address

Message

Count

Destination

Process ID
Message

Data Type

Message

Tag
Communicator

 Anatomy of MPI Components in sending a message

 Support Heterogeneous computing

 Allow messages from non-contiguous,non-uniform memory sections

Multi-Core Processors : MPI 1.0 Overview Part-I 35 C-DAC hyPACK-2013

MPI Message Passing : Receive

Fortran
MPI_RECV (buf, count, datatype, source, tag, comm, status)

[OUT buf] initial address of receive buffer (choice)

[IN count] number of elements in receive buffer (integer)

[IN datatype] datatype of each receive buffer element (handle)

[IN source] rank of source (integer)

[IN tag] message tag (integer)

[IN comm] communicator (handle)

[OUT status] status object (Status)

C

MPI_Recv (void* buf, int count, MPI_Datatype datatype, int source,

 int tag, MPI_Comm comm, MPI_Status *status);

(Contd…)

MPI Point-to-Point Communication Library Calls

Multi-Core Processors : MPI 1.0 Overview Part-I 36 C-DAC hyPACK-2013

PE 0

PE 1

 MEMORY

 Network

Sending and Receiving Messages

A message consists of several components,

outlined below

Sender specifies

• destination PE

• tag

• present address

of data on sending

PE

• length of message

Receiver specifies

• source PE

• tag

• location for data

placement

(Contd…)

MPI Point-to-Point Communication Library Call

A message “tag” also known as a message type, is an integer used by the

programmer to label different types of message and to restrict reception.

Multi-Core Processors : MPI 1.0 Overview Part-I 37 C-DAC hyPACK-2013

Example Program in MPI

 To write a simple parallel program in which every process with

rank greater than 0 sends a message “Hello_World” to a

process with rank 0. The processes with rank 0 receives the

message and prints out

Example : A Sample MPI program in Fortran

 program hello

include ‘mpif.h’

integer MyRank, Numprocs, ierror, tag, status (MPI_STATUS_SIZE)

character *12 send_message, recv_message

data send_message/ ‘Hello_World’/

 call MPI_INIT (ierror)

call MPI_COMM_SIZE (MPI_COMM_WORLD, Numprocs, ierror)

call MPI_COMM_RANK (MPI_COMM_WORLD, MyRank, ierror)

 tag=100

Multi-Core Processors : MPI 1.0 Overview Part-I 38 C-DAC hyPACK-2013

Example : A Sample MPI program in Fortran

if (MyRank .eq. 0) then

 do i= 1, Numprocs-1

 call MPI_RECV(recv_message, 12, MPI_CHARACTER,

 i, tag, MPI_COMM_WORLD,status, ierror)

 print *, ‘node’, MyRank, ‘:’, recv_message

 end do

else

 call MPI_SEND(send_message, 12, MPI_CHARACTER, 0,

 tag, MPI_COMM_WORLD, ierror)

endif

call MPI_FINALIZE (ierror)

stop

end

Example Program in MPI
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-I 39 C-DAC hyPACK-2013

Example : A Sample MPI program in C

include <stdio.h>

include “mpi.h”

main (int argc, char **argv)

{

 int MyRank, Numprocs, tag, ierror, i;

 MPI_Status status;

 char send_message[12], recv_message[12];

 MPI_Init (&argc, &argv);

 MPI_Comm_size (MPI_COMM_WORLD, &Numprocs);

 MPI_Comm_rank (MPI_COMM_WORLD, &MyRank);

 tag = 100;

 strcpy (send_message, “Hello_World”);

Example Program in MPI
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-I 40 C-DAC hyPACK-2013

Example : A Sample MPI program in C

 if (MyRank==0) {

 for (i=1; i<Numprocs; i++) {

 MPI_Recv (recv_message,12, MPI_CHAR, i, tag,

MPI_COMM_WORLD,&status);

 printf (“node %d : %s \n”, MyRank, recv_message);

 }

 } else

 MPI_Send(send_message, 12, MPI_CHAR,0, tag, MPI_COMM_WORLD);

 MPI_Finalize();

}

Example Program in MPI
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-I 41 C-DAC hyPACK-2013

MPI Routines used in Hello_World Program : MPI_Send/MPI_Recv

Synopsis : C

int MPI_Send (void* buf, int count, MPI_Datatype datatype, int dest,

 int tag MPI_Comm comm) ;

int MPI_Recv(void*buf, int count, MPI_Datatype datatype, int source,

 int tag MPI_Comm comm, MPI_Status *status);

Synopsis :Fortran

 MPI_SEND (buf, count, datatype, dest, tag, comm, ierror)

 MPI_RECV (buf, count, datatype, source, tag, comm, ierror)

 <type> bufffer(*),

 integer count, datatype, dest, source, tag, comm, ierror

MPI Point-to-Point Communication

Multi-Core Processors : MPI 1.0 Overview Part-I 42 C-DAC hyPACK-2013

MPI_Send and MPI_Recv

 MPI provides for point-to-point communication between pair of

processes

 Message selectively is by rank and message tag

 Rank and tag are interpreted relative to the scope of the

communication

 The scope is specified by the communicator

 Rank and tag may be wildcarded

 The components of a communicator may not be wildcarded

(Contd…)

 MPI Point-to-Point Communication

Multi-Core Processors : MPI 1.0 Overview Part-I 43 C-DAC hyPACK-2013

Point-to-Point Communications

The sending and receiving of messages between pairs of processors.

 BLOCKING SEND: returns only after the corresponding RECEIVE

operation has been issued and the message has been transferred.

 MPI_Send

 BLOCKING RECEIVE: returns only after the corresponding SEND

has been issued and the message has been received.

 MPI_Recv

 MPI Blocking Send and Receive
(Contd…)

Multi-Core Processors : MPI 1.0 Overview Part-I 44 C-DAC hyPACK-2013

A message tag, also known as a message type, is an integer used by the

programmer to label different types of message and to restrict message

reception.

Example: P and R processes each send a request message to a process Q.

Process P: Process R:

send(req1,32,Q) send(req2,32,Q)

 Process Q:

 while(true) {

 recv(received_req, Any_processes, 32);

 process received_req;

}

It is unknown which send will be executed

first. This is not flexible since all requests

are processed the same way.

Process P: Process R:

send(req1,32,Q,tag1) send(req2,32,Q,tag2)

 Process Q:

 while(true) {

 recv(received_req, Any_processes, 32,Any_Tag,Status);

 if(Status.Tag==tag1) process received_req in one way;

 if(Status.Tag==tag2)process received_req in other way;

 }

with

tags

 Message Envelope in MPI : Tag

Multi-Core Processors : MPI 1.0 Overview Part-I 45 C-DAC hyPACK-2013

Status is a pointer to a structure which holds various information

about the message received.

MPI_Status Status

Source process rank and the actual message tag can be found in

the two fields

Status. MPI_SOURCE

Status. MPI_TAG

Routine MPI_Get_count(&Status, MPI_INT, &C) uses information

in Status to determine the actual number of data items of a certain

datatype(i.e MPI_INT) and puts the number in C.

 Message Envelope in MPI : Status

Multi-Core Processors : MPI 1.0 Overview Part-I 46 C-DAC hyPACK-2013

 A communicator is a process group plus a context. A process group is a

finite and ordered set of processes.

 The finiteness implies that a group has a finite number n of processes,

where n is called the group size.

 The ordering means that the n processes are ranked by integers 0,1,2,,n-1

 A process is identified by its rank in a communicator (group). The group

size and the rank of a process are obtained by calling the two MPI

routines.

 Message Envelope in MPI : Communicator

int MPI_Comm_rank (MPI_Comm comm, int *rank)

int MPI_Comm_size (MPI_Comm comm, int *size)

Multi-Core Processors : MPI 1.0 Overview Part-I 47 C-DAC hyPACK-2013

 Most MPI users only need to use routines for communications within a

group (called as intra-communicators in MPI)

 Context in MPI are like system-designated supertags that safely

separates different communications from adversely interfering with one

another

 Each Communicator has a distinct context. A message sent in one

context can not be received in another context.

 MPI is designed so that communications within different communicates

are separated and any collective communication is separate from any

point-to-point communications, even if they are within the same

communicator.

 This communicator concept facilitates the development of libraries

 Managing Communicators :MPI_COMM_WORLD contains set of all

process

 Message Envelope in MPI : Intra-Communicators & Context

Multi-Core Processors : MPI 1.0 Overview Part-I 48 C-DAC hyPACK-2013

Synchronous: The send cannot return until the corresponding

receive has started. An application buffer is available in the

receiver side to hold the arriving message.

Buffered : Buffered send assumes the availability of buffer

space which is specified by the MPI_Buffer_attach(buffer,size)

which allocates user buffer of size bytes.

Standard : The send can be either synchronous or buffered,

depending on the implementation.

Ready: The send is certain that the corresponding receive has

already started. It does not have to wait as in the synchronous

mode.

MPI Point-to-Point Communication: Communication Modes

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-I 49 C-DAC hyPACK-2013

MPI Primitive Blocking Nonblocking

Standard Send MPI_Send MPI_Isend

Synchronous

Send

MPI_Ssend MPI_Issend

Buffered Send MPI_Bsend MPI_Ibsend

Ready Send MPI_Rsend MPI_Irsend

Receive MPI_Recv MPI_Irecv

Completion

Check

MPI_Wait MPI_Test

Different Send/Receive operations in MPI

MPI Point-to-Point Communication: Communication Modes

Multi-Core Processors : MPI 1.0 Overview Part-I 50 C-DAC hyPACK-2013

• Synchronous message passing

• Blocking Send/Receive

• NonBlocking Send/Receive

Process P: Process R:

 M=10; S=-100;

L1: send M to Q; L1: receive S from P;

L2: M=20; L2: X=S+1;

 goto L1;

Process P sends a message contained in variable M to process Q,

which receives the message into its variable S.

MPI Point-to-Point Communication: Message Passing Modes

Multi-Core Processors : MPI 1.0 Overview Part-I 51 C-DAC hyPACK-2013

Communication Event Synchronous Blocking Nonblocking

Send start condition Both send and receive Send reached Send reached

Return of send indicates Message received Message sent Message send

initiated

Semantics Clean In-between Error-prone

Buffering message Not needed Needed Needed

Status checking Not needed Not needed Needed

Wait overhead Highest In-between Lowest

Overlapping in

communications and

computations

No Yes yes

MPI Point-to-Point Communication: Message Passing Modes

Multi-Core Processors : MPI 1.0 Overview Part-I 52 C-DAC hyPACK-2013

Synchronization Speed

 Refers to the time needed for all processors to agree they have

finished one step of a problem and are ready to go together to the next

step

Synchronization

 Waiting until all processes finish a loop
(No one can leave until everyone finishes breakfast)

 Waiting until the first of any of the contributing processes finds a

particular answer (We can all leave as soon as one of us finds the keys

to the car)

 Assigning a unique task to each processor from a list of tasks
(Each one of us will search for the keys in a different room)

 Key Issues In Message Passing System

Multi-Core Processors : MPI 1.0 Overview Part-I 53 C-DAC hyPACK-2013

 MPI is De-facto standard for message-passing in a box

 Performance was a high-priority in the design

 Rich set of Point-to-Point and Collective functions

 No language binding issues

 Scalability can be achieved as we increase the problem size

 Portability problems do not exist

 Performance tuning can be done

 Conclusions

Source : Reference : [11], [12], [25], [26]

Multi-Core Processors : MPI 1.0 Overview Part-I 54 C-DAC hyPACK-2013

MPI Resources

The MPI Standard : http://www.mcs.anl.gov/mpi

Multi-Core Processors : MPI 1.0 Overview Part-I 55 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : MPI 1.0 Overview Part-I 56 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : MPI 1.0 Overview Part-I 57 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : MPI 1.0 Overview Part-I 58 C-DAC hyPACK-2013

 Thank You
 Any questions ?

