
Multi-Core Processors : Tuning & Performance/Compilers Part-II 1 C-DAC hyPACK-2013

Lecture Topic:

Multi-Core Processors :

Tuning & Performance /Compilers Part-II

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators
Power-Aware Computing – Performance of

Applications Kernels

Multi-Core Processors : Tuning & Performance/Compilers Part-II 2 C-DAC hyPACK-2013

 An overview Tuning & Performance on Multi Cores

 Understanding Code Restructuring on Single Core /Multi
Core – Compiler Switches

 Multi Core Programming - Performance Issues

 Performance issues - Examples on Single /Multiple
Cores

Lecture Outline

Following Topics will be discussed

Tuning & Performance - PThreads Model

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 3 C-DAC hyPACK-2013

Parallel Code Block or a

section needs multithread

synchronization

. . .

 .

 .

 .

 .

 .

 .

Parallel Code Block

Implementation Source Code

Perform synchronization

operations using parallel

constructs Bi

Perform synchronization

operations using parallel

constructs Bj

T1 T2 Tn
. . .

T1
T2 Tn . . .

T1 …. p

Operational Flow of Threads

Operational Flow of Threads for an Application

Source : Reference : [6]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 4 C-DAC hyPACK-2013

 Explicit Parallel Programming

Thread-based Programming Models.

 Data Parallel Programming Models

Stream Programming Models

Programming Multicore Processors

 Auotomatic Parallelization

Features of Most compliers for SMP systems, but
currently see very little practical use

 Polyhedral framework for dependencies and loop
transformations – enabling composition of complex
transformations over multiple statements.

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 5 C-DAC hyPACK-2013

Questions to be addressed :

 How Compiler optimizations can help user to get good performance?

 What you can do in your sequential program to get Single Core

performance?

 What can you do in your parallel program to get good performance

on given Multi Cores ?

 What advanced things can I do with the compiler to help get good

performance as well as correct results on Multi Cores ?

Remarks:

 It is important to know whether the compiler is compiling the code

optimally so that you can adjust the code, compiler options or
something else on Single /Multi Cores

Using Your Compiler Effectively : Basic Compiler Tech.

Multi-Core Processors : Tuning & Performance/Compilers Part-II 6 C-DAC hyPACK-2013

 How much sustained performance one can achieve for given

program on a Multi Cores ?

 Improving Single Core Performance

 It is programmer’s job to take advantage as much as possible of

the Cores hardware /software characteristics to boost the

performance of the program on Multi Cores !

 Quite often, just a few simple changes to one’s code improves

performance by a factor of 2, 3 or better !

 Also, simply compiling with some of the optimization flags (-O3, -

fast, ….) can improve the performance dramatically on Multi Cores

Multi-Core Processors : Tuning & Performance/Compilers Part-II 7 C-DAC hyPACK-2013

 Performance on Multi Core has to do with the following :

 Problem size and precision (Role of Compiler)

 Execution time - Computational Issues (Role of Compilers)

 Ease of Programming (Role of Compilers)

Number of runnable threads /System Supported Cores

 Single Core Performance: Compiler Optimization

 Questions to be addressed

 How big a problem can I solve on Multi cores ?

 How precise is the solution of my problem ?

 How long will it take for the Multi Cores to run the program to

completion ?

Multi-Core Processors : Tuning & Performance/Compilers Part-II 8 C-DAC hyPACK-2013

Two issues to be addressed

How well does the single-threaded version run ?

How well can the work be divided up among multiple

processors with the least amount of overhead ?

Are we implemented well-designed algorithm ?

Are we implemented well-tuned application ?

Multi Core : Performance oriented Prog.

Multi-Core Processors : Tuning & Performance/Compilers Part-II 9 C-DAC hyPACK-2013

 Data Parallel models
Microsoft Research Accelerator

Multi-threaded Models
OpenMP, MPI

Cilk

CUDA

 Streaming Models
Streamit

Cilk

Peakstream (Brook)

Multi Core : Programming Models

Source : Reference [4],[6], [7], [8]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 10 C-DAC hyPACK-2013

 Find out the routines that are taking the most time.

 Compiling with suitable option will instrument a code so that

the “gprof” command can produce a first-cut picture of where time

is being spent.

 Use Multi Core Profilers & Thread Checkers to understand the

behavior of code

Timing Code :

 The first step in optimizing code is to profile it.
 Identify hot spots.
 It is often wise to time these regions by hand using a real time clock.

Compiler Techniques : Detailed Code Profiling

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 11 C-DAC hyPACK-2013

Parallel Programming – Compiler switches

Remarks

 In some cases, parallelizing a reduction loop can give different

answers depending on the number of cores on which the loop is run.

 Compiler directives can usually over come artificial barriers to

parallelization.

 Compiler directives can also over come legitimate barriers to

parallelization, which introduces errors.

 The efficiency and effectiveness of automatic compiler parallelization

on Multi Core Systems can be significantly improved by supplying the

switches.

Source : Reference [4],[6], [7], [8]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 12 C-DAC hyPACK-2013

 Challenges in Threading Loop

Loop-carried Dependence

Data Race Conditions

Managing Shared and Private Data

Loop Scheduling and Portioning

Effective use of Reductions

Muti Core : Performance oriented Prog.

Minimizing Thread Overheating

Work-Sharing Sections Source : Reference [4],[6], [7], [8]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 13 C-DAC hyPACK-2013

 Too Many Threads

 Data Races, Deadlocks, and Live Locks

 Heavily Contented Locks

 Thread Safe functions and Libraries

 Memory Issues

 Cache-related Issues

Multi Core : Performance oriented Prog.

Multi-Core Processors : Tuning & Performance/Compilers Part-II 14 C-DAC hyPACK-2013

 The Underlying performance of the single-threaded code

 The percentage of the program that is run in parallel and its

scalability

 CPU utilization, effective data sharing, data locality and load

balancing

 The amount of synchronization and communication among the

threads

 Memory Conflicts caused by shared memory or falsely shared

memory.

Multi Core : Performance oriented Prog.

Source : Reference [4],[6], [7], [8]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 15 C-DAC hyPACK-2013

 The overheads introduced to

 Create

 resume

 Manage

 Suspend

 Destroy,

 Wait

 Synchronize

Multi Core : Performance oriented Prog.

 Performance Limitations

 Shared resources – Memory, write combining buffers, bus

bandwidth, and CPU execution units

Source : Reference [4],[6], [7], [8]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 16 C-DAC hyPACK-2013

NETWORK

CPU0 CPU1 CPU2 CPU3

Memory

CPU0 CPU1 CPU2 CPU3

Memory

Multi core Node 0 Multi Core Node 1

 COMMUNICATION NETWORK

P • • • •

M

P

M

P

M

P

M

Shared Memory
Non-Shared Memory

General-Purpose Clusters /Multi Cores

Source : http://www.intel.com; http://www.amd.com; Reference [4], [6]

http://www.intel.com/
http://www.amd.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-II 17 C-DAC hyPACK-2013

Multi Cores Processors
C

P
U

1

C
P

U
2

System/

Mem I/F

L2 Cache

C
P

U
1

C
P

U
2

System/

Mem I/F

 L2 Cache

C
P

U
1

C
P

U
2

System/

Mem I/F

L2 Cache

C
P

U
1

C
P

U
2

System/

Mem I/F

L2 Cache

Memory

Controller
Mem Mem

HyperTransport Link

Memory

Controller

Front Side

Bus
C

P
U

1

C
P

U
2

System/

Mem I/F

L2 L2

C
P

U
1

C
P

U
2

System/

Mem I/F

L2 L2

Core 2 Xeon Dual-Core Opteron Core 2 Quad/Extreme

Source : http://www.intel.com; http://www.amd.com

http://www.intel.com/
http://www.amd.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-II 18 C-DAC hyPACK-2013

CPU 0 CPU 1

Memory

Simple SMP Block Diagram

for a two processors

AMD Opteron

CPU0

 Memory

AMD Opteron

CPU1

 Memory

HyperTransport

Two processor AMD

Opteron system in

cc NUMA configuration

Two processor Dual Core

Multi Cores Processors

Source : http://www.amd.com

http://www.amd.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-II 19 C-DAC hyPACK-2013

Core 0 Core 1

AMD Opteron Dual-

Core Processor 0

HyperTransport

Dual-Core AMD Opteron Processor configuration

 Memory

Core 2 Core 3

 Memory

AMD Opteron Dual-

Core Processor 1

 AMD : Cache-Coherent nonuniform memory access (ccNUMA)

 Two or more processors are connected together on the same

motherboard

 In ccNUMA design, each processor has its own memory system.

 The phrase ‘Non Uniform Memory access’ refers to the potential

difference in latency

Multi Cores Processors

Source : http://www.amd.com

http://www.amd.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-II 20 C-DAC hyPACK-2013

Gains from tuning categories

Tuning Category Typical Range of Gain

Source range 25-100%

Compiler Flags 5-20%

Use of libraries 25-200%

Assembly coding / tweaking 5-20%

Manual prefetching 5-30%

TLB thrashing/cache 20-100%

Using vis.inlines/micro-

vectorization

100-200%

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 21 C-DAC hyPACK-2013

Loop Optimization Techniques

 Classical Optimization techniques – Compiler Does

 Memory Reference Optimization – Compiler does to some extent

 Loop Optimizations – Compiler does to some extent

 Loop Fission and Loop Fusion

 Loop distribution

 Loop Interchange

 Loop Alignment

 Loop Collapsing

 Loop Unrolling

 The programmer should be cautious when Loop Optimizations

are performed on Multi Core Processors.

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 22 C-DAC hyPACK-2013

Source Code Optimizations

Improve usage of data cache, TLB

Use VIS instructions (templates) directly, via –xvis

option

Optimize data alignment (also: #pragma align,dalign)

Prevent Register Window overflow

Creating inline assembly templates for performance

critical routines

Loop Optimizations that compilers may miss:
Restructuring for pipelining and prefetching

Loop splitting/fission

Loop Peeling

Loop interchange

Loop unrolling and tiling

Pragma directed
Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 23 C-DAC hyPACK-2013

Loop Optimization Techniques

 Dependence Analysis

 Transformation Techniques

 Loop distribution

 Loop Alignment

 Node Splitting

 Strip Mining

 Loop Collapsing

 Loop Fission Loop Fusion

 Wave front method

 Loop Optimizations

 Basic Loop Unrolling & Qualifying Candidates for Loop Unrolling

 Negatives of Loop Unrolling

 Outer and Inner Loop Unrolling

 Associative Transformations

 Loop Interchange

More about Loop Optimizations

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 24 C-DAC hyPACK-2013

Loop Unrolling Issues on Multi Cores

 Loop unrolling always adds some run time to the program.

 If you unroll a loop and see the performance dip little, you can

assume that either:

 The loop wasn’t a good candidate for unrolling in the first place

 or

 A secondary effort absorbed your performance increase.

 Other possible reasons

 Unrolling by the wrong factor –Data Race Conditions

 Register spitting

 Instruction cache miss – False Sharing of Data

 Other hardware delays -

 Outer loop unrolling - Data Re-Use in the Caches of Multi Cores

Multi-Core Processors : Tuning & Performance/Compilers Part-II 25 C-DAC hyPACK-2013

Loop Distribution

 Loop distribution aims at distributing operations in such a way that

the need for explicit synchronization is reduced.

 It changes the execution order but keeps the same statements.

 It can not eliminate dependencies but it can rearrange them and in

particular, it can help in changing loop-carried into loop-independent

dependencies.

DO 10 I=1, N

 C(I)=A(I)+B(I)

 D(I)=A(I-1)+B(I)

10 CONTINUE

Original
DO 10 I=1, N

 C(I)=A(I)+B(I) 10

CONTINUE

DO 20 I=1, N

 D(I)=C(I-1)x B(I)

20 CONTINUE

Modified

Multi-Core Processors : Tuning & Performance/Compilers Part-II 26 C-DAC hyPACK-2013

Loop Collapsing

 It attempts to create one (larger) loop out of two or more small ones.

 This may be profitable if the size of each of the two loops is too small

for efficient vectorization, but the resulting single loop can be

profitably vectorized.

 REAL A(5,5) B(5,5)

 DO 10 J =1, 5

 DO 10 I=1, 5

 A(I,J) = B(I,J) + 2.0

10 CONTINUE

Before

 REAL A(25) B(25)

 DO 10 JI =1, 25

 A(JI) = B(JI) +2.0

10 CONTINUE

 Loop collapsing is done with multi-dimensional arrays to avoid loop

overheads

After

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 27 C-DAC hyPACK-2013

 Using this technique, the code may be transferred into a single loop,

regardless of the size of M and N

 This may require some additional statement to restart the code

properly.

DO 10 L = 1, NxM

 I = (L-1)/M+1

 I = MOD(L-1,M) +1)

 A(I,J) = B(I,J) + 2.0

10 CONTINUE

After

(Contd…) Loop Collapsing

DO 10 J =1, N

 DO 10 I =1, M

 A(I,J) = B(I,J) + 2.0

10 CONTINUE

 General Versions of this technique is useful for computing

systems which support only a single (not nested) DOALL

statement.

Before

Multi-Core Processors : Tuning & Performance/Compilers Part-II 28 C-DAC hyPACK-2013

Loop Collapsing (Contd…)

 Loop collapsing is done with multi-dimensional arrays to avoid

loop overheads

 Assume declaring a[50][80][4]

Un Collapsed Loop

 for(I = 0; I <50; i++)

 for(j = 0; j<80; j++)

 for(k = 0; k<4; k++)

 a[i][j][k] = a[i][j][k] * b[i][j][k] + c[i][j][k];

 Warning : This works only if the entire array space is accessed !

 for(i=0; i<50*80*4; i++)

a[0][0][k] = a[0][0][k] * b[0][0][k] + c[0][0][k];

Collapsed Loop

Multi-Core Processors : Tuning & Performance/Compilers Part-II 29 C-DAC hyPACK-2013

Loop Fusion:

 It transforms two adjacent loops into one on the basis of

information obtained from data-dependencies analysis.

Remark : Loop Fission and Loop Fusion are related techniques to

Strip mining and loop collapsing

Loop Fission and Loop Fusion

Loop Fission:

 Attempts to break a single loop into several loops in order to

optimize data transfer (behavior main memory, cache and

registers)

 Primary objective of optimization is data transfer.

Rule:

 Two statements will be placed into the same loop if there is atleast

one variable or array which is referred by both.

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 30 C-DAC hyPACK-2013

 It is merging of several loops into a single loop

 Example : Untuned Example : Tuned

 Loop Fusion

for(i=0; i < 100000; i++)

 x = x * a[i] + b[i];

for(i=0; i < 100000; i++)

 y = y * a[i] + c[i];

for(i=0; i < 100000; i++) {

 x = x * a[i] + b[i];

 y = y * a[i] + c[i];

 }

 Tuned code runs atleast 10 times faster on Ultra Sparc (both with –

O3 flag)

(Contd…)

Multi-Core Processors : Tuning & Performance/Compilers Part-II 31 C-DAC hyPACK-2013

 Advantages

 The loop overhead is reduced by a factor of two in the above

case.

 Allows for better instruction overlap in loops with dependencies.

 Cache misses can be decreased if both loops reference the

same array.

 Loop Fusion
(Contd…)

 Disadvantages

 Has the potential to increase cache misses if the fused loops

contain references to more than four arrays and the starting

elements of those arrays map to the same cache line.

 e.g:

 x = x * a[i] + b[i] * c[i] + d[i] / e[i]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 32 C-DAC hyPACK-2013

Loop Optimizations : Basic Loop Unrolling

 Loop optimizations accomplish three things :

 Reduce loop overhead

 Increase Parallelism

 Improve memory performance patterns

 Understanding your tools and how they work is critical for using them

with peak effectiveness. For performance, a compiler is your best

friend.

 Loop unrolling is performing multiple loop iterations per pass.

 Loop unrolling is one of the most important optimizations that can

be done on a pipelined machine.

 Loop unrolling helps performance because it fattens up a loop with

calculations that can be done in parallel

 Remark : Never unroll an inner loop.

Multi-Core Processors : Tuning & Performance/Compilers Part-II 33 C-DAC hyPACK-2013

Qualifying Candidates for Loop Unrolling

 The previous example is an ideal candidate for loop unrolling.

 Study categories of loops that are generally not prime candidates

for unrolling.

 Loops with low trip counts

 Fat loops

 Loops containing branches

 Recursive loops

 Vector reductions

 To be effective, loop unrolling requires that there be a fairly large

number of iterations in the original loop.

 When a trip count in loop is low, the preconditioning loop is doing

proportionally large amount of work.

Multi-Core Processors : Tuning & Performance/Compilers Part-II 34 C-DAC hyPACK-2013

Qualifying candidates for Loop Unrolling

 Loop containing procedure calls

 Loop containing subroutine or function calls generally are not good

candidates for unrolling.

 First : They often contain a fair number of instructions already. The

function call can cancel many more instructions.

 Second : When the calling routine and the subroutine are compiled

separately, it is impossible for the compiler to intermix instructions.

 Last : Function call overhead is expensive. Registers have to be

saved, argument lists have to be prepared.The time spent calling and

returning from a subroutine can be much greater than that of the loop

overhead.

(Contd..)

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 35 C-DAC hyPACK-2013

 II=IMOD (N,4)

 DO 9 I=1, II

 CALL SHORT (A(I),B(I),C)

9 CONTINUE

 DO 10 I=1+II, N,4

 CALL SHORT(A(I),B(I),C)

 CALL SHORT(A(I+1),B(I+1),C)

 CALL SHORT(A(I+2),B(I+2),C)

 CALL SHORT(A(I+3),B(I+3),C)

10 CONTINUE

 If a particular loop is already fat, then unrolling is not going to help much and

loop overhead will spread over a fair number of instructions.

 A good rule of thumb is to look elsewhere for performance when the loop

inwards exceed three or four statements.

 Since code indicates that in lining is feasible.

(Contd…)

DO 10 I=1, N

 CALL SHORT(A(I), B(I),C)

10 CONTINUE

 SUBROUTINE SHORT (A,B,C)

 A = A+B+C

 RETURN
 END

Qualifying Candidates for Loop Unrolling

Multi-Core Processors : Tuning & Performance/Compilers Part-II 36 C-DAC hyPACK-2013

Qualifying Candidates for Loop Unrolling

Original

 Dependency can be reduced by deriving new set of recursive equations

 Decreasing the dependencies at the expense of creating more work.

DO 10 I=2, N

 A(I) = A(I) + A(I-1) x B

10 CONTINUE

Modified

DO 10 I =2, N,2

 A(I) = A(I+1) + A(I-1) * B + A(I-1) *B*B

 A(I) = A(I) + A(I-1)*B

10 CONTINUE

 This is an example of vector recursion-though very to improve.

 A Good compiler can make the rolled up version go faster by

recognizing the dependency as opportunity to save memory traffic.

A(I) = A(I)+A(I-1)*B

A(I+1) = A(I+1)+A(I)*B

A(I+2) = A(I+2)+A(I+1)*B

A(I+3) = A(I+3)+A(I+2)*B

Recursive Loops

(Contd..)

Multi-Core Processors : Tuning & Performance/Compilers Part-II 37 C-DAC hyPACK-2013

Outer and Inner Loop Unrolling

Remark : The loop or loops in the center are called the inner

loops and the surrounding loops are called outer loops

 Loopnest: Enabled loops within other created loops

for (i=0; i<n; i++)

for (j=0; j<n; j++)

 for (k=0; k<n; k++)

 a[i][j][k] = a[i][j][k] + b[i][j][k]*c;

 Original: for loop nest

for (i=0; i<n; i++)

for (j=0; j<n; j+=2)

for (k=0; k<n; k++){

 a[i][j][k] = a[i][j][k] + b[i][k][j]*c;

a[i][j+1][k] = a[i][j+1][k] + b[i][k][j+1]*c;

}

 Unrolling the middle (j) loop twice

Modified code

Multi-Core Processors : Tuning & Performance/Compilers Part-II 38 C-DAC hyPACK-2013

Outer and Inner Loop Unrolling

 Reasons for applying outer loop unrolling are:

 To expose more computations

 To improve memory reference patterns

for(I =0; i<n; i++)

for(j = 0; j<n; j+=2)

 for(k = 0; k<n; k+=2){

 a[i][j][k] = a[i][j][k] + b[i][k][j]*c;

 a[i][j+1][k] = a[i][j+1][k] + b[i][k][j+1]*c;

 a[i][j][k+1] = a[i][j][k+1] + b[i][k+1][j]*c;

 a[i][j+1][k+1] = a[i][j+1][k+1] + b[i][k+1][j+1]*c;

}

 Unrolling the ‘k’ loop twice Modified code

Multi-Core Processors : Tuning & Performance/Compilers Part-II 39 C-DAC hyPACK-2013

Loop Unrolling and Sum Reduction

 Loop Unrolling should be used to reduce data dependency. Different

variables can be used to eliminate the data dependency

a=0.0;

for (I=0; i<ARRAY_SIZE; i++)

 for (j=0; j< ARRAY_SIZE;j++)

 a = a+ b[j]*c[i];

 Untuned Loop

a1 = a2 = a3 = a4 = 0.0;

for (i=0; i<ARRAY_SIZE; i++)

for (j=0; j< ARRAY_SIZE; j++){

a1 = a1 + b[j] *c[i];

a2 = a2 + b[j+1]*c[i];

a3 = a3 + b[j+2]*c[i];

a4 = a4 + b[j+3]*c[i];

aa = a1 + a2 + a3 + a4; }

 Tuned Loop (unrolled to depth 4)

 Speed increased by a factor of 4 ! (with appropriate compiler

switches))

Modified code

Original code

Multi-Core Processors : Tuning & Performance/Compilers Part-II 40 C-DAC hyPACK-2013

Loop Interchange

 Loop interchange is a technique for rearranging a loop nest so that

the right stuff at the center. What is the right stuff depends upon

what you are trying to accomplish.

 Loop interchange to move computations to the center of the loop

nest.

 It is also good for improving memory access patterns.

 Iterations on the wrong subscript can cause a large stride and hurt

your performance.

 Inverting the loops, so that the iterating variables causing the lesser

strides are in the center, you can get performance win.

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 41 C-DAC hyPACK-2013

PARAMETER(IDIM=1000,JDIM=1000,

 KDIM = 4)

 DO 10 K=1, IDIM

 DO 20 I=1, KDIM

 DO 30 J=1, JDIM

 D(K,J,I)=D(K,J,I)+ V(K,J,I)*DT

 30 CONTINUE

 20 CONTINUE

 10 CONTINUE

Loop Interchange

PARAMETER(IDIM=1000,JDIM=1

000 ,

KDIM=4)

DO 10 I =1, IDIM

 DO 20 J =1, JDIM

 DO 30 K =1, KDIM

 D(K,J,I)=D(K,J,I)+

V(K,J,I)*DT

30 CONTINUE

20 CONTINUE

10 CONTINUE

 Loop interchange to move computations to the center

 Frequently, the interchange of nested loops permits a significant

increase in the amount of parallelism

 Example is straight forward: it is easy to see that there are no inter

iteration dependencies.

(Contd…)

Multi-Core Processors : Tuning & Performance/Compilers Part-II 42 C-DAC hyPACK-2013

float a[2][40][2000]

for(i=0; i<2; i++)

for(j=0; j<40; j++)

for(k=0; k<2000; k++)

 a[i][j][k] = a[i][j][k] * 2.50 + 0.056;

 A reduction of about 15 % execution time was

obtained in C/Fortran

Loop Interchange

 Loop Interchange is done to minimize the stride access

corresponding to array elements in the innermost loops.

 Interchanging loops can also reduce the loop overhead when the

inner loop are iterate much less than the outer loops

float a[2000][40][2]

for(i=0; i<2000; i++)

for(j=0; j<40; j++)

for(k=0; k<2; k++)

 a[i][j][k] = a[i][j][k] * 2.50 + 0.056;

(Contd…)

Original code

Modified code

Multi-Core Processors : Tuning & Performance/Compilers Part-II 43 C-DAC hyPACK-2013

 Statements that do not change within an inner loop can be moved

outside of the loop. (Compiler optimizations can usually detect these).

for(i=0 ; i<1000; i++){

for(j=0 ; j<1000; j++){

 if(a[i]>100) b[i] = a[i]–5.0;

 x=x+a[j] + b[i];

 }

/* BEWARE if a[i]=a[i]–5.0;

 result could be very different!*/

Loop Optimization: Invariant Code Extraction

Example : Data Wrap around, Untuned

Remark : Tuned code can about 75 times faster than untuned code!

for(i=0;i<1000; i++)

{

 if(a[i]>100)

 b[i]=a[i]–5.0;

for(j=0;j<1000; j++)

 x = x + a[j] + b[i];

}

Data Wrap around, tuned

Multi-Core Processors : Tuning & Performance/Compilers Part-II 44 C-DAC hyPACK-2013

 Loop De-factorization consists of removing common

multiplicative factors outside of inner loops

for(i=0; i<1000; i++){

 a[i] = 0.0;

for(j=0; j<1000; j++)

a[i] = a[i] + b[j]*d[j]*c[j];}

Loop Optimization: Loop De-factorization

Example Factorized

Remark :

 On some platforms, there is benefit in doing this since one (two)

multiplication(s) AND one (two) addition(s) can be done simultaneously

in one clock cycle!

 Compiler optimizations will not be able to determine that neighbor data

dependency.

 Results may vary due to precision of computer

 for(i=0; i<1000; i++){

 a[i] = 0.0;

 for(j=0; j<1000; j++){

 a[i] = a[i]+ b[j]*d[j];

 a[i] = a[i]*c[j];}

De-Factorized

Multi-Core Processors : Tuning & Performance/Compilers Part-II 45 C-DAC hyPACK-2013

Untuned Loops (IFs and GOTOs): Turned Loop :

 I=0 I = 0

10 I = I + I 10 I = I + 1

 IF(I.GT.100000)GOTO 30 A(I)=A(I)+B(I)*C(I)

 A(I)=A(I) + B(I)*C(I) IF(I.LE.100000)GOTO 10

 GOTO 10

30 CONTINUE

Another Untuned Loop (WHILE Loop) : Turned Loop:

 I = 0 DO I = 1, 100000

 DO WHILE (I .LT. 100000) A(I) = A(I)+B(I)*C(I)

 I = I + 1 END DO

 A(I) = A(I)+B(I)*C(I)

 ENDDO

 Avoid IF/GOTO loops and WHILE loops. They inhibit compiler

optimizations and they introduce unnecessary overheads.

Loop Optimization: IF, WHILE, and DO Loops

Multi-Core Processors : Tuning & Performance/Compilers Part-II 46 C-DAC hyPACK-2013

Example: data wrap around, untuned version

jwrap = ARRAY_SIZE –1;

for(i=0; i<ARRAY_SIZE; i++)

 b[i] =(a[i]+a[jwrap])*0.5;

 jwrap = i; }

 Compiler optimizations will not be
able to determine that a [jwrap] is

a neighbor value

1 2 3 4 8 9

Loop Optimization: Neighbor Data Dependency

Example: data wrap around, tuned version:

 b[0] = (a[0] + a[ARRAY_SIZE –1]) * 0.5;

 for(i=1 ; i < ARRAY_SIZE ; i++)

 b[i] = (a[i]+a[i-1]) * 0.5;

Remark : Once the program is debugged, declare arrays to exact sizes

whenever possible. This reduces memory use and also optimizes

pipelining and cache utilization.

Multi-Core Processors : Tuning & Performance/Compilers Part-II 47 C-DAC hyPACK-2013

Programming Techniques – Managing the Cache

DO 10, J = 1, N

 DO 10, I = 1, N

 DO 10, K = 1, N

 C(I, J) = C (I, J) + A (I, K) * B (K, J)

10 CONTINUE

We can modify the previous code to better use the cache.

Original code

Modified code DO 10, JB = 1, N, NB

 DO 10, IB = 1, N, NB

 DO 10, KB = 1, N, NB

 DO 10, J = JB, JB + NB – 1

 DO 10, I = IB, IB + NB – 1

 DO 10, K = KB, KB + NB – 1

 C (I, J) = C (I, J) + A (I, K) * B(K,J)

10 CONTINUE

This is most useful as a simple example of cache blocking. Compilers
cache block the original code as part of ordinary optimization.

Multi-Core Processors : Tuning & Performance/Compilers Part-II 48 C-DAC hyPACK-2013

Programming Techniques –Cache Blocking

 Cache blocking is most effective at the highest level in the code.

 Even code that uses cache-blocked routines in tuned system math

libraries can sometimes be blocked at a higher level.

 Consider the following code to compute C = AB and E = AD for N x N

matrices A, B, C, D, and E:

 CALL DGEMM(‘NO TRANSPOSE A’, ‘NO TRANSPOSE B’, N, N, N,

$ 1.0D0, A, LDA, B, LDB, 0.ODO, C, LDC)

 CALL DGEMM(‘NO TRANSPOSE B’, ‘NO TRANSPOSE A’, N, N, N, N,

$ 1.0D0, A, LDA, D, LDD, 0.D0, E, LDE)

Original code

Multi-Core Processors : Tuning & Performance/Compilers Part-II 49 C-DAC hyPACK-2013

Programming Techniques –Cache Blocking

This is the globally blocked code from the previous example:

DO 10, J = 1, N, NB

 DO 10, K = 1, N, NB

 CALL DGEMM (‘NO TRANS A’, ‘NO TRANS B’, N, NB, NB,

$ 1.0D0, A(1, K), LDA, B(K,J), LDB, 0.0D0, C(1,J), LDC)

 CALL DGEMM (‘NO TRANS A’, ‘NO TRANS D’, N, NB, NB,

$ 1.0D0, A(1, K), LDA, D(K,J), LDD, 0.ODO, E(1,J), LDE)

10 CONTINUE

Modified code

Source : Reference [4],[6], [7], [8], [32], 34]

Multi-Core Processors : Tuning & Performance/Compilers Part-II 50 C-DAC hyPACK-2013

 Reducing Memory Overheads is important for performance on Multi

cores

 Minimization of memory traffic is the single most important goal.

 Advanced Compiler Optimization flags can be used for performance

 Write code so that a compiler find it easy to locate optimizations

 Reduce the Overheads due to Multi-Threaded Programming.

Conclusions

Multi-Core Processors : Tuning & Performance/Compilers Part-II 51 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-II 52 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-II 53 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : Tuning & Performance/Compilers Part-II 54 C-DAC hyPACK-2013

32. Kevin Dowd, O'Reilly & Associates, Inc.,First edition, ISBN: 1-56592-032-5 (1993)

33. Rajat P. Garg and Ilya Sharapov "Techniques for Optimizing Applications: High Performance

Computing" ISBN: 0-13-093476-3 , 2002

34. Dr.Christian Halloy and Dr. Kwai Wong "Parallel Computing Techniques to Maximize Your Megaflops"
upercomputing'99-Portland, OR Tutorial Workshop Notes, November 15, 1999

References

Multi-Core Processors : Tuning & Performance/Compilers Part-II 55 C-DAC hyPACK-2013

 Thank You
 Any questions ?

