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 An overview Tuning & Performance on Multi Cores  
 

 Understanding Code Restructuring on Single Core /Multi 
Core – Compiler Switches  
 

 Multi Core Programming - Performance Issues    
 

 Performance issues  - Examples on Single /Multiple 
Cores  

 

Lecture Outline  

Following Topics will be discussed 

Tuning & Performance  - PThreads Model 

Source : Reference [4],[6], [7], [8], [32], 34] 
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Implementation Source Code 

Perform synchronization 

operations using parallel 

constructs Bi 
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operations using parallel 

constructs Bj 
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Operational Flow of Threads 

Operational Flow of Threads for an Application 

Source : Reference : [6] 
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 Explicit Parallel Programming   

Thread-based Programming Models.  
 

  Data Parallel Programming Models 
 

Stream Programming Models 

Programming Multicore Processors  

 Auotomatic Parallelization  

Features of Most compliers for SMP systems, but 
currently  see very little practical use 
 

  Polyhedral framework for dependencies and loop 
transformations – enabling composition of complex 
transformations over multiple statements. 
 

Source : Reference [4],[6], [7], [8], [32], 34] 
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Questions to be addressed :  
 

 How Compiler optimizations can help user to get good performance? 
 

 What you can do in your sequential program to get Single Core 

performance? 
 

 What can you do in your parallel program to get good performance 

on given Multi Cores ? 
 
 What advanced things can I do with the compiler to help get good 

performance as well as correct results  on Multi  Cores  ? 
 

Remarks: 
 
 It is important to know whether the compiler is compiling the code 

optimally so that you can adjust the code, compiler options or 
something else on Single /Multi Cores  

Using Your Compiler Effectively : Basic Compiler Tech. 
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 How much sustained performance one can achieve for given 

program on a Multi Cores ? 

 Improving Single Core Performance 

 It is programmer’s job to take advantage as much as possible of 

the Cores hardware /software characteristics to boost the 

performance of the program on Multi Cores  ! 

 

 Quite often, just a few simple changes to one’s code improves 

performance by a factor of 2, 3 or better ! 

 

 Also, simply compiling with some of the optimization flags (-O3, - 

fast, ….) can improve the performance dramatically on Multi Cores 



Multi-Core Processors : Tuning & Performance/Compilers Part-II 7 C-DAC   hyPACK-2013 

   Performance on Multi Core has to do with the following : 
 

 Problem size and precision (Role of Compiler) 
 

 Execution time - Computational Issues (Role of Compilers) 
 

 Ease of Programming (Role of Compilers) 

 

Number of runnable threads /System Supported Cores  

     Single Core Performance: Compiler Optimization 

   Questions to be addressed  
 

  How big a problem can I solve  on Multi cores ?  
 

  How precise is the solution of my problem ? 
 

  How long will it take for the Multi Cores  to run the program to    

completion ? 
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Two issues to be addressed  

 

How well does the single-threaded version run ? 

 

How well can the work be divided up among multiple 

processors with the least amount of overhead ? 

 

Are we implemented well-designed algorithm ? 

 

Are we implemented well-tuned application  ? 

Multi Core : Performance oriented Prog. 
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 Data Parallel models 
Microsoft Research Accelerator 
 

Multi-threaded Models 
OpenMP, MPI 

Cilk 

CUDA 

 

 Streaming Models 
Streamit 

Cilk 

Peakstream (Brook) 

Multi Core : Programming Models 

Source : Reference [4],[6], [7], [8] 
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 Find out the routines that are taking the most time. 

 
 

 Compiling with suitable option  will instrument a code so that 

the “gprof” command can produce a first-cut picture of where time 

is being spent. 

 

 Use Multi Core Profilers & Thread Checkers to understand the 

behavior of code  
 
 

Timing Code :  

 The first step in optimizing code is to profile it. 
 Identify hot spots. 
 It is often wise to time these regions by hand using a real time clock. 

 

Compiler Techniques : Detailed Code Profiling 

Source : Reference [4],[6], [7], [8], [32], 34] 
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Parallel Programming – Compiler switches 

Remarks 

 

 In some cases, parallelizing a reduction loop can give different 

answers depending on the number of cores  on which the loop is run. 
 

 Compiler directives can usually over come artificial barriers to 

parallelization. 
 

 Compiler directives can also over come legitimate barriers to 

parallelization, which introduces errors. 
 

 The efficiency and effectiveness of automatic compiler parallelization 

on Multi Core Systems can be significantly improved by supplying the 

switches. 

Source : Reference [4],[6], [7], [8] 
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 Challenges in Threading Loop  
 

Loop-carried Dependence 

 

Data Race Conditions 

 

Managing Shared and Private Data  

 

Loop Scheduling and Portioning  

 

Effective use of Reductions  

Muti Core : Performance oriented Prog. 

 

Minimizing Thread Overheating   

 
Work-Sharing Sections Source : Reference [4],[6], [7], [8] 
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 Too Many Threads 

 

 Data Races, Deadlocks, and Live Locks 

 

 Heavily Contented Locks 

 

 Thread Safe functions and Libraries 

 

 Memory Issues  

 

 Cache-related Issues 

 

Multi Core : Performance oriented Prog. 
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 The Underlying performance of the single-threaded code  

 

 The percentage of the program that is run in parallel and its 

scalability 

 

 CPU utilization, effective data sharing, data locality and load 

balancing 

 

 The amount of synchronization and communication among the 

threads 

 

 Memory Conflicts caused by shared memory or falsely shared 

memory.  

Multi Core : Performance oriented Prog. 

Source : Reference [4],[6], [7], [8] 
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 The overheads introduced to  

 

 Create 

 resume 

 Manage 

 Suspend 

 Destroy, 

 Wait  

 Synchronize 

Multi Core : Performance oriented Prog. 

 

 Performance Limitations  

 Shared resources – Memory, write combining buffers, bus 

bandwidth, and CPU execution units  

Source : Reference [4],[6], [7], [8] 
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NETWORK  

CPU0 CPU1 CPU2 CPU3 

Memory 

CPU0 CPU1 CPU2 CPU3 

Memory 

Multi core Node 0 Multi Core Node 1 

 COMMUNICATION NETWORK 

P • • • •  

M 

P 

M 

P 

M 

P 

M 

Shared Memory  
Non-Shared Memory  

General-Purpose Clusters /Multi Cores  

Source : http://www.intel.com;    http://www.amd.com; Reference [4], [6]  

http://www.intel.com/
http://www.amd.com/
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Multi Cores Processors  
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Source : http://www.intel.com;    http://www.amd.com  

http://www.intel.com/
http://www.amd.com/
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CPU 0  CPU 1  

Memory   

Simple SMP Block Diagram 

for a two processors 

AMD Opteron 

CPU0   

 Memory   

AMD Opteron 

CPU1  

 Memory   

HyperTransport 

Two processor AMD 

Opteron system in       

cc NUMA configuration   

Two processor Dual Core    

Multi Cores Processors  

Source : http://www.amd.com  

http://www.amd.com/
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Core 0  Core 1  

AMD Opteron Dual-

Core Processor 0 

HyperTransport 

Dual-Core AMD Opteron Processor configuration    

 Memory   

Core 2  Core 3  

 Memory   

AMD Opteron Dual-

Core Processor 1 

 AMD : Cache-Coherent nonuniform memory access (ccNUMA) 

 Two or more processors are connected together on the same 

motherboard 
 
 In ccNUMA design, each processor has its own memory system. 

 

 The phrase ‘Non Uniform Memory access’ refers to the potential 

difference in latency 

Multi Cores Processors  

Source : http://www.amd.com  

http://www.amd.com/
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Gains from tuning categories 

Tuning Category Typical Range of Gain 

Source range 25-100% 

Compiler Flags 5-20% 

Use of libraries 25-200% 

Assembly coding / tweaking 5-20% 

Manual prefetching 5-30% 

TLB thrashing/cache 20-100% 

Using vis.inlines/micro-

vectorization 

100-200% 

Source : Reference [4],[6], [7], [8], [32], 34] 
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Loop Optimization Techniques 

 Classical Optimization techniques – Compiler Does 

 Memory Reference Optimization – Compiler does to some extent 

 Loop Optimizations – Compiler does to some extent 

  Loop Fission and Loop Fusion 

  Loop distribution  

  Loop Interchange 

  Loop Alignment 

  Loop Collapsing 

  Loop Unrolling 

 The programmer should be cautious when Loop Optimizations 

are performed on  Multi Core Processors. 

Source : Reference [4],[6], [7], [8], [32], 34] 
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Source Code Optimizations 

Improve usage of data cache, TLB 

Use VIS instructions (templates) directly, via –xvis 

option 

Optimize data alignment (also: #pragma align,dalign) 

Prevent Register Window overflow 

Creating inline assembly templates for performance 

critical routines 

Loop Optimizations that compilers may miss: 
Restructuring for pipelining and prefetching 

Loop splitting/fission 

Loop Peeling 

Loop interchange 

Loop unrolling and tiling 

Pragma directed 
Source : Reference [4],[6], [7], [8], [32], 34] 
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Loop Optimization Techniques 

  Dependence Analysis 

  Transformation Techniques 

  Loop distribution  

  Loop Alignment 

  Node Splitting 

 Strip Mining 

  Loop Collapsing 

  Loop Fission Loop Fusion 

  Wave front method 

  Loop Optimizations 

  Basic Loop Unrolling & Qualifying Candidates for Loop Unrolling  

  Negatives of Loop Unrolling  

  Outer and Inner Loop Unrolling 

  Associative Transformations 

  Loop Interchange 

More about Loop Optimizations  

Source : Reference [4],[6], [7], [8], [32], 34] 
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Loop Unrolling Issues on Multi Cores  

 Loop unrolling always adds some run time to the program. 

 If you unroll a loop and see the performance dip little, you can 

assume that either: 

 The loop wasn’t a good candidate for unrolling in the first place 

    or  

 A secondary effort absorbed your performance increase. 

 Other possible reasons 

 Unrolling by the wrong factor –Data Race Conditions   

 Register spitting 

 Instruction cache miss – False Sharing of Data  

 Other hardware delays -  

 Outer loop unrolling  - Data Re-Use in the Caches of Multi Cores 
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Loop Distribution 

 Loop distribution aims at distributing operations in such a way that 

the need for explicit  synchronization is reduced. 
 

 It changes the execution order but keeps the same statements. 
 

 It can not eliminate dependencies but it can rearrange them and in 

particular, it can help in changing loop-carried into loop-independent 

dependencies. 

DO 10 I=1, N   

 C(I)=A(I)+B(I) 

 D(I)=A(I-1)+B(I)                  

10 CONTINUE 

Original 
DO 10 I=1, N   

 C(I)=A(I)+B(I) 10 

CONTINUE                         

DO 20 I=1, N     

 D(I)=C(I-1)x B(I)        

20 CONTINUE 

Modified 
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Loop Collapsing  

 It attempts to create one (larger) loop out of two or more small ones. 
 

 This may be profitable if the size of each of the two loops is too small 

for efficient vectorization, but the resulting single loop can be 

profitably vectorized. 

   REAL A(5,5) B(5,5)                                                              

  DO 10 J =1, 5                                                               

  DO 10 I=1, 5                                              

   A(I,J) = B(I,J) + 2.0                                               

10 CONTINUE 

Before 

   REAL A(25) B(25)                                                             

   DO 10 JI =1, 25                                                               

   A(JI) = B(JI) +2.0                                               

10 CONTINUE 

 Loop collapsing is done with multi-dimensional arrays to avoid loop  

overheads 

After 

Source : Reference [4],[6], [7], [8], [32], 34] 
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 Using this technique, the code may be transferred into a single loop, 

regardless of the size of M and N 

 This may require some additional statement to restart the code 

properly. 

DO 10 L = 1, NxM                              

         I   = (L-1)/M+1                

        I  = MOD(L-1,M) +1) 

  A(I,J) = B(I,J) + 2.0                           

10 CONTINUE 

After 

(Contd…) Loop Collapsing  

DO 10 J =1, N                              

 DO 10 I =1, M   

   A(I,J) = B(I,J) + 2.0                  

10 CONTINUE 

 General Versions of this technique is useful for computing 

systems which support only a single (not nested) DOALL 

statement. 

Before 
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Loop Collapsing  (Contd…) 

 Loop collapsing is done with multi-dimensional arrays to avoid 

loop overheads 

 Assume declaring a[50][80][4] 

Un Collapsed Loop 

 for(I = 0; I <50;  i++)                                                                    

 for(j = 0;  j<80;  j++)                                                          

 for(k = 0; k<4;  k++)      

  a[i][j][k] = a[i][j][k] * b[i][j][k] + c[i][j][k]; 

 Warning : This works only if the entire array space is accessed ! 

 for(i=0; i<50*80*4; i++)                                     

a[0][0][k]  = a[0][0][k] * b[0][0][k] + c[0][0][k]; 

Collapsed Loop 
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Loop Fusion: 

 It transforms two adjacent loops into one on the basis of 

information obtained from data-dependencies analysis. 

Remark : Loop Fission and Loop Fusion are related techniques to 

Strip mining and loop collapsing 

Loop Fission and Loop Fusion 

Loop Fission: 

 Attempts to break a single loop into several loops in order to 

optimize data transfer (behavior main memory, cache and 

registers) 

 Primary objective of optimization is data transfer. 

Rule:   

 Two statements will be placed into the same loop if there is atleast 

one variable or array which is referred by both. 
 

Source : Reference [4],[6], [7], [8], [32], 34] 
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 It is merging of several loops into a single loop  
 

 Example : Untuned    Example : Tuned 

 Loop Fusion 

for(i=0; i < 100000; i++) 

 x = x * a[i] + b[i]; 

for(i=0; i < 100000; i++) 

 y = y * a[i] + c[i]; 

for(i=0; i < 100000; i++) {                            

  x = x * a[i] + b[i]; 

  y = y * a[i] + c[i];  

  } 

 Tuned code runs atleast 10 times faster on Ultra Sparc  (both with –

O3 flag) 

(Contd…) 
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 Advantages 
 

 The loop overhead is reduced by a factor of two in the above 

case. 
 

 Allows for better instruction overlap in loops with dependencies. 
 

 Cache misses can be decreased if both loops reference the 

same array. 

 Loop Fusion 
(Contd…) 

 Disadvantages 
 

 Has the potential to increase cache misses if the fused loops 

contain references to more than four arrays and the starting 

elements of those arrays map to the same cache line. 
 

 e.g: 

 x = x * a[i] + b[i] * c[i] + d[i] / e[i] 
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Loop Optimizations : Basic Loop Unrolling 

 Loop optimizations accomplish three things : 

  Reduce loop overhead 
 

  Increase Parallelism 
 

  Improve memory performance patterns 

 Understanding your tools and how they work is critical for using them 

with peak effectiveness. For performance, a compiler is your best 

friend. 
 

 Loop unrolling is performing multiple loop iterations per pass. 
 

 Loop unrolling is one of the most important optimizations that can 

be done on a pipelined machine. 
  
 Loop unrolling helps performance because it fattens up a loop with 

calculations that can be done in parallel 

 

 Remark : Never unroll an inner loop. 
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Qualifying Candidates for Loop Unrolling 

 The previous example is an ideal candidate for loop unrolling. 

 Study categories of loops that are generally not prime candidates 

for unrolling. 

 Loops with low trip counts 

 Fat loops 

 Loops containing branches 

 Recursive loops 

 Vector reductions 

 To be effective, loop unrolling requires that there be a fairly large 

number of iterations in the original loop.   

 When a trip count in loop is low, the preconditioning loop is doing 

proportionally large amount of work. 
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Qualifying candidates for Loop Unrolling 

  Loop containing procedure calls  

     Loop containing subroutine or function calls generally are not good 

candidates for unrolling. 
 

 First : They often contain a fair number of instructions already. The 

function call can cancel many more instructions. 
 

 Second : When the calling routine and the subroutine are compiled 

separately, it is impossible for the compiler to intermix instructions. 

 Last : Function call overhead is expensive. Registers have to be 

saved, argument lists have to be prepared.The time spent calling and 

returning from a subroutine can be much greater than that of the loop 

overhead. 

(Contd..) 

Source : Reference [4],[6], [7], [8], [32], 34] 
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   II=IMOD (N,4)                                                                  

  DO 9 I=1, II                                                              

   CALL SHORT (A(I),B(I),C)                                                

9  CONTINUE                                         

  DO 10 I=1+II, N,4                                                             

  CALL SHORT(A(I),B(I),C)                                                        

  CALL SHORT(A(I+1),B(I+1),C)                                                   

  CALL SHORT(A(I+2),B(I+2),C)                                        

  CALL SHORT(A(I+3),B(I+3),C)                                            

10 CONTINUE 

 If a particular loop is already fat, then unrolling is not going to help much and 

loop overhead will spread over a fair number of instructions. 

 A good rule of thumb is to look elsewhere for performance when the loop 

inwards exceed three or four statements.  

 Since code indicates that in lining is feasible. 

(Contd…) 

DO 10 I=1, N                                                                        

 CALL SHORT(A(I), B(I),C)                                                 

10 CONTINUE                  

 SUBROUTINE SHORT (A,B,C)                                                

 A = A+B+C                                                                 

 RETURN                                                                        
  END  

Qualifying Candidates for Loop Unrolling 
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Qualifying Candidates for Loop Unrolling 

Original 

 Dependency can be reduced by deriving new set of recursive equations 

 Decreasing the dependencies at the expense of creating more work. 

DO 10 I=2, N                                                        

 A(I) = A(I) + A(I-1) x B                                                             

10 CONTINUE 

Modified 

DO 10 I =2, N,2                                                        

  A(I) = A(I+1) + A(I-1) * B +  A(I-1) *B*B                                       

  A(I) = A(I) + A(I-1)*B                                                            

10 CONTINUE 

 This is an example of vector recursion-though very to improve. 

 A Good compiler can make the rolled up version go faster by 

recognizing the dependency as opportunity to save memory traffic. 

A(I)     = A(I)+A(I-1)*B                                                       

A(I+1) = A(I+1)+A(I)*B                            

A(I+2) = A(I+2)+A(I+1)*B                                            

A(I+3) = A(I+3)+A(I+2)*B 

Recursive Loops 

(Contd..) 
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Outer and Inner Loop Unrolling 

Remark :  The loop or loops in the center are called the inner 

loops and  the surrounding loops are called outer loops 

 Loopnest: Enabled loops within other created loops  

for (i=0;  i<n;  i++)                                

for (j=0; j<n;  j++)                           

                for (k=0; k<n; k++)   

  a[i][j][k] = a[i][j][k] + b[i][j][k]*c; 

 Original: for loop nest 

for (i=0; i<n; i++)                                                                                  

for (j=0; j<n; j+=2)                          

for (k=0; k<n; k++){        

   a[i][j][k] = a[i][j][k]   + b[i][k][j]*c;     

a[i][j+1][k] = a[i][j+1][k] + b[i][k][j+1]*c; 

} 

 Unrolling the middle (j) loop twice 

Modified code 



Multi-Core Processors : Tuning & Performance/Compilers Part-II 38 C-DAC   hyPACK-2013 

Outer and Inner Loop Unrolling 

 Reasons for applying outer loop unrolling are: 

 To expose more computations 

 To improve memory reference patterns 

for(I =0; i<n; i++)                                                                           

for(j = 0; j<n; j+=2)                             

    for(k = 0; k<n;  k+=2){       

    a[i][j][k]      = a[i][j][k]    + b[i][k][j]*c;                                                    

 a[i][j+1][k]      = a[i][j+1][k]        + b[i][k][j+1]*c;                                                     

 a[i][j][k+1]      = a[i][j][k+1]        + b[i][k+1][j]*c; 

 a[i][j+1][k+1]  = a[i][j+1][k+1]   + b[i][k+1][j+1]*c;              

} 

 Unrolling the ‘k’ loop twice  Modified code 
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Loop Unrolling and Sum Reduction  

 Loop Unrolling should be used to reduce data dependency. Different 

variables can be used to eliminate the data dependency 

a=0.0;                                                                    

for (I=0;   i<ARRAY_SIZE; i++)                

 for (j=0; j< ARRAY_SIZE;j++)                          

    a = a+ b[j]*c[i]; 

 Untuned Loop  

a1 = a2 = a3 = a4 = 0.0;                                                                              

for (i=0; i<ARRAY_SIZE; i++)                                                                    

for (j=0; j< ARRAY_SIZE; j++){                                                                           

a1 = a1 + b[j]  *c[i];                                                                               

a2 = a2 + b[j+1]*c[i];                                                                                   

a3 = a3 + b[j+2]*c[i];                                                                                 

a4 = a4 + b[j+3]*c[i];                                                                                   

aa = a1 + a2 + a3 + a4; }  

 Tuned Loop (unrolled to depth 4) 

 Speed increased by a factor of 4 ! (with appropriate compiler 

switches) ) 

Modified code 

Original code 
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Loop Interchange 

 Loop interchange is a technique for rearranging a loop nest so that 

the right stuff at the center.  What is the right stuff depends upon 

what you are trying to accomplish. 
 

 Loop interchange to move computations to the center of the loop 

nest. 
 

 It is also good for improving memory access patterns. 
  

 Iterations on the wrong subscript can cause a large stride and hurt 

your performance. 
 

 Inverting the loops, so that the iterating variables causing the lesser 

strides are in the center, you can get performance win. 

Source : Reference [4],[6], [7], [8], [32], 34] 
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PARAMETER(IDIM=1000,JDIM=1000,  

     KDIM = 4) 

  DO 10 K=1, IDIM                                                                   

  DO 20 I=1, KDIM                                                               

    DO 30 J=1, JDIM                                                                  

   D(K,J,I)=D(K,J,I)+ V(K,J,I)*DT                                                         

 30 CONTINUE                                                      

 20 CONTINUE                                                            

 10 CONTINUE 

Loop Interchange 

PARAMETER(IDIM=1000,JDIM=1

000               , 

KDIM=4)                                     

DO 10  I =1, IDIM                                                                   

  DO 20 J  =1, JDIM                                                               

   DO 30 K =1, KDIM                                                                  

   D(K,J,I)=D(K,J,I)+   

V(K,J,I)*DT                                                           

30 CONTINUE                                                      

20 CONTINUE                                                            

10 CONTINUE 

 Loop interchange to move computations to the center 

 Frequently, the interchange of nested loops permits a significant 

increase in the amount of parallelism  

 Example is straight forward: it is easy to see that there are no inter 

iteration dependencies. 

(Contd…) 
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float a[2][40][2000]                                                              

for(i=0; i<2; i++)                                                                      

for(j=0; j<40; j++)                                                 

for(k=0; k<2000; k++)     

    a[i][j][k] = a[i][j][k] * 2.50 + 0.056; 

 A reduction of about 15  % execution time was 

obtained in C/Fortran 

Loop Interchange 

 Loop Interchange is done to minimize the stride access 

corresponding to array elements in the innermost loops.  

 Interchanging loops can also reduce the loop overhead when the 

inner loop are iterate much less than the outer loops 
      

float a[2000][40][2]                                                               

for(i=0; i<2000; i++)                                                                     

for(j=0; j<40; j++)                                                         

for(k=0; k<2; k++)     

    a[i][j][k] = a[i][j][k] * 2.50 + 0.056; 

(Contd…) 

Original code 

Modified code 
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 Statements that do not change within an inner loop can be moved 

outside of the loop.  (Compiler optimizations can usually detect these). 

for(i=0 ; i<1000; i++){                           

for(j=0 ; j<1000; j++){ 

 

 if(a[i]>100) b[i] =  a[i]–5.0; 

     x=x+a[j] + b[i]; 

 } 

/*   BEWARE if a[i]=a[i]–5.0;                              

 result could be very different!*/     

Loop Optimization: Invariant Code Extraction 

Example : Data Wrap around, Untuned 

Remark : Tuned code can about 75 times faster than untuned code!  

for(i=0;i<1000; i++) 

{  

     if(a[i]>100) 

     b[i]=a[i]–5.0; 

for(j=0;j<1000; j++) 

 x = x + a[j] + b[i]; 

} 

Data Wrap around, tuned 
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 Loop De-factorization consists of removing common 

multiplicative factors outside of inner loops 

for(i=0; i<1000; i++){ 

   a[i] = 0.0;    

for(j=0; j<1000; j++)   

a[i] = a[i] + b[j]*d[j]*c[j];} 

Loop Optimization: Loop De-factorization 

Example Factorized 

Remark :  

 On some platforms, there is benefit in doing this since one (two) 

multiplication(s) AND one (two) addition(s) can be done simultaneously 

in one clock cycle! 

 Compiler optimizations will not be able to determine that neighbor data 

dependency. 

  Results may vary due to precision of computer 

 for(i=0; i<1000; i++){ 

   a[i] = 0.0;    

   for(j=0; j<1000; j++){  

    a[i] = a[i]+  b[j]*d[j]; 

    a[i] = a[i]*c[j];} 

De-Factorized 
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Untuned Loops (IFs and GOTOs):   Turned Loop :   

       I=0                                 I = 0 

10  I = I + I                                        10 I = I + 1 

    IF(I.GT.100000)GOTO 30                 A(I)=A(I)+B(I)*C(I) 

    A(I)=A(I) + B(I)*C(I)                          IF(I.LE.100000)GOTO 10 

     GOTO 10 

30 CONTINUE 

 
Another Untuned Loop (WHILE Loop) :      Turned Loop: 
 

 I = 0                                             DO I = 1, 100000 

 DO WHILE (I .LT. 100000)                      A(I) = A(I)+B(I)*C(I) 

          I = I + 1                  END DO                

         A(I) = A(I)+B(I)*C(I)         

  ENDDO 

 Avoid IF/GOTO loops and WHILE loops.  They inhibit compiler 

optimizations and they introduce unnecessary overheads. 
  

Loop Optimization: IF, WHILE, and DO Loops 
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Example: data wrap around, untuned version 

jwrap = ARRAY_SIZE –1; 

for(i=0; i<ARRAY_SIZE; i++) 

  b[i] =(a[i]+a[jwrap])*0.5; 

 jwrap = i; }  

 Compiler optimizations will not be 
able to determine that a [jwrap] is 

a neighbor value 

1 2 3 4 8 9 

Loop Optimization: Neighbor Data Dependency 

Example: data wrap around, tuned version: 

 b[0] = (a[0] + a[ARRAY_SIZE –1]) * 0.5; 

 for(i=1 ; i < ARRAY_SIZE ; i++)                     

  b[i] = (a[i]+a[i-1]) * 0.5; 

Remark : Once the program is debugged, declare arrays to exact sizes 

whenever possible.  This reduces memory use and also optimizes 

pipelining and cache utilization. 
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Programming Techniques – Managing the Cache 

DO 10, J = 1, N 

 DO 10, I = 1, N 

  DO 10, K = 1, N 

   C(I, J) = C (I, J) + A (I, K) * B (K, J) 

10 CONTINUE 

We can modify the previous code to better use the cache. 

Original code 

Modified code DO 10, JB = 1, N, NB 

 DO 10, IB = 1, N, NB 

  DO 10, KB = 1, N, NB 

   DO 10, J = JB, JB + NB – 1 

    DO 10, I = IB, IB + NB – 1 

     DO 10, K = KB, KB + NB – 1 

      C (I, J) = C (I, J) + A (I, K) * B(K,J) 

10 CONTINUE 

This is most useful as a simple example of cache blocking. Compilers 
cache block the original code as part of ordinary optimization. 
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Programming Techniques –Cache Blocking 

 Cache blocking is most effective at the highest level in the code.   

 

 Even code that uses cache-blocked routines in tuned system math 

libraries can sometimes be blocked at a higher level.   

 

 Consider the following code to compute C = AB and E = AD for N x N 

matrices A, B, C, D, and E: 

 
  CALL DGEMM(‘NO TRANSPOSE A’, ‘NO TRANSPOSE B’, N, N, N,  

$   1.0D0, A, LDA, B, LDB, 0.ODO, C, LDC) 

 

  CALL DGEMM(‘NO TRANSPOSE B’, ‘NO TRANSPOSE A’, N, N, N, N,  

$   1.0D0, A, LDA, D, LDD, 0.D0, E, LDE) 

Original code 
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Programming Techniques –Cache Blocking 

This is the globally blocked code from the previous example: 

 

DO 10, J = 1, N, NB 

 

 DO 10, K = 1, N, NB 

 

  CALL DGEMM (‘NO TRANS A’, ‘NO TRANS B’, N, NB, NB, 

$   1.0D0, A(1, K), LDA, B(K,J), LDB, 0.0D0,  C(1,J), LDC) 

 

 

  CALL DGEMM (‘NO TRANS A’, ‘NO TRANS D’, N, NB, NB, 

$    1.0D0, A(1, K), LDA, D(K,J), LDD, 0.ODO, E(1,J), LDE) 

 

10 CONTINUE 

Modified code 

Source : Reference [4],[6], [7], [8], [32], 34] 
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 Reducing Memory Overheads is important for performance on Multi 

cores  

 Minimization of memory traffic is the single most important goal. 

 Advanced Compiler Optimization flags can be used for performance 
 

 Write code so that a compiler find it easy to locate optimizations 
 

 Reduce the Overheads due to Multi-Threaded Programming. 
 

Conclusions 
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 Thank You  
   Any questions ? 


