
Multi-Core Processors : Tuning & Performance/Compilers Part-I 1 C-DAC hyPACK-2013

Lecture Topic:

Multi-Core Processors :

Tuning & Performance /Compilers Part-I

C-DAC Four Days Technology Workshop

ON

 hyPACK-2013

(Mode-1:Multi-Core)

Venue : CMSD, UoHYD ; Date : October 15-18, 2013

Hybrid Computing – Coprocessors/Accelerators
Power-Aware Computing – Performance of

Applications Kernels

Multi-Core Processors : Tuning & Performance/Compilers Part-I 2 C-DAC hyPACK-2013

 An overview Tuning & Performance on Multi Cores

 Understanding Single Core /Multi Core – Compiler
Switches

 Automatic Parallelization & Compiler Optimization

 Performance issues - Examples

Lecture Outline

Following Topics will be discussed

The POSIX Threads (Pthreads) Model

Multi-Core Processors : Tuning & Performance/Compilers Part-I 3 C-DAC hyPACK-2013

Parallel Code Block or a

section needs multithread

synchronization

. . .

 .

 .

 .

 .

 .

 .

Parallel Code Block

Implementation Source Code

Perform synchronization

operations using parallel

constructs Bi

Perform synchronization

operations using parallel

constructs Bj

T1 T2 Tn
. . .

T1
T2 Tn . . .

T1 …. p

Operational Flow of Threads

Operational Flow of Threads for an Application

Source : Reference : [6]

Multi-Core Processors : Tuning & Performance/Compilers Part-I 4 C-DAC hyPACK-2013

 Explicit Parallel Programming

Thread-based Programming Models.

 Data Parallel Programming Models

Stream Programming Models

Programming Multicore Processors

 Automatic Parallelization

Features of Most compliers for SMP systems, but
currently see very little practical use

Polyhedral framework for dependencies and loop
transformations – enabling composition of complex
transformations over multiple statements.

Source : Reference : [4], [6]

Multi-Core Processors : Tuning & Performance/Compilers Part-I 5 C-DAC hyPACK-2013

Questions to be addressed :

 How compiler optimizations can help user to get good performance?

 What you can do in your sequential program to get uniprocessor

performance?

 What can you do in your parallel program to get good performance

on given parallel machine?

Remarks:

 It is important to know whether the compiler is compiling the code

optimally so that you can adjust the code, compiler options or
something else.

Using Your Compiler Effectively : Basic Compiler Tech.

Multi-Core Processors : Tuning & Performance/Compilers Part-I 6 C-DAC hyPACK-2013

 Improving Single Core Performance

 How much sustained performance one can achieve for

given program on a machine ?

 It is programmer’s job to take advantage as much as

possible of the CPU’s hardware /software characteristics to

boost the performance of the program !

Quite often, just a few simple changes to one’s code

improves performance by a factor of 2, 3 or better !

 Also, simply compiling with some of the optimization flags (-

O3, - fast, ….) can improve the performance dramatically !

Multi-Core Processors : Tuning & Performance/Compilers Part-I 7 C-DAC hyPACK-2013

 Performance has to do with the following :

 Problem size and precision (Role of Compiler)

 Execution time - Computational Issues (Role of Compilers)

 Ease of Programming (Role of Compilers)

 Single Core Performance: Compiler Optimization

 Questions to be addressed

 How big a problem can I solve ?

 How precise is the solution of my problem ?

 How long will it take for the computer to run the program to

completion ?

Multi-Core Processors : Tuning & Performance/Compilers Part-I 8 C-DAC hyPACK-2013

 Approximate access times

 CPU-registers: 0 cycles (that’s where the work is done!)

 L1 Cache: 1 cycle (Data and Instruction cache). Repeated

access to a cache takes only 1 cycle

 L2 Cache (static RAM): 3-5 cycles?

 Memory (DRAM): 10 cycles (Cache miss);

 30-60 cycles for Translation Lookaside Buffer (TLB) update

 Disk: about 100,000 cycles!

 connecting to other nodes - depending on network latency

Icache Dcache

L2
DISK

RAM

CPU

registers

 A lot of time is spent accessing/storing data from/to memory. It is

important to keep in mind the relative times for each memory types:

The Memory sub-system : Access time

Access Time

is Important

Multi-Core Processors : Tuning & Performance/Compilers Part-I 9 C-DAC hyPACK-2013

Memory Management

 Memory Reference Optimization and Managing Memory

Overheads play an key role for performance

 Hierarchical Memory features of Memory Sub-System

 Getting memory references right is one of the most

important challenges of application performance

 Memory access patterns for performance

 Cache Performance and Cache Miss

 Cache Memories for Reducing Memory Overheads

 Role of Data Reuse on Memory system performance

 Techniques for Hiding Memory Latency (Multi-threading)

Multi-Core Processors : Tuning & Performance/Compilers Part-I 10 C-DAC hyPACK-2013

NETWORK

CPU0 CPU1 CPU2 CPU3

Memory

CPU0 CPU1 CPU2 CPU3

Memory

Multi core Node 0 Multi Core Node 1

 COMMUNICATION NETWORK

P • • • •

M

P

M

P

M

P

M

Shared Memory
Non-Shared Memory

General-Purpose Clusters /Multi Cores

Source : http://www.intel.com; http://www.amd.com; Reference [4], [6]

http://www.intel.com/
http://www.amd.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-I 11 C-DAC hyPACK-2013

Multi Cores Processors
C

P
U

1

C
P

U
2

System/

Mem I/F

L2 Cache

C
P

U
1

C
P

U
2

System/

Mem I/F

 L2 Cache

C
P

U
1

C
P

U
2

System/

Mem I/F

L2 Cache

C
P

U
1

C
P

U
2

System/

Mem I/F

L2 Cache

Memory

Controller
Mem Mem

HyperTransport Link

Memory

Controller

Front Side

Bus
C

P
U

1

C
P

U
2

System/

Mem I/F

L2 L2

C
P

U
1

C
P

U
2

System/

Mem I/F

L2 L2

Core 2 Xeon Dual-Core Opteron Core 2 Quad/Extreme

Source : http://www.intel.com; http://www.amd.com

http://www.intel.com/
http://www.amd.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-I 12 C-DAC hyPACK-2013

CPU 0 CPU 1

Memory

Simple SMP Block Diagram

for a two processors

AMD Opteron

CPU0

 Memory

AMD Opteron

CPU1

 Memory

HyperTransport

Two processor AMD

Opteron system in

cc NUMA configuration

Two processor Dual Core

Multi Cores Processors

Source : http://www.amd.com

http://www.amd.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-I 13 C-DAC hyPACK-2013

Core 0 Core 1

AMD Opteron Dual-

Core Processor 0

HyperTransport

Dual-Core AMD Opteron Processor configuration

 Memory

Core 2 Core 3

 Memory

AMD Opteron Dual-

Core Processor 1

 AMD : Cache-Coherent nonuniform memory access (ccNUMA)

 Two or more processors are connected together on the same

motherboard

 In ccNUMA design, each processor has its own memory system.

 The phrase ‘Non Uniform Memory access’ refers to the potential

difference in latency

Multi Cores Processors

Source : http://www.amd.com

http://www.amd.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-I 14 C-DAC hyPACK-2013

Dual-Core AMD Opteron Processor configuration

 AMD : Cache-Coherent nonuniform memory access (ccNUMA)

 Two or more processors are connected together on the same

motherboard

 Dual Core AMD Opteron processors share the on-chip integrated

memory controller and memory.

 Because of the difference in latencies in ccNUMA systems, the

OS must make determinations that enable best performance.

 The optimization applies to 32-bit & 64 bit software

Multi Cores Today

Multi-Core Processors : Tuning & Performance/Compilers Part-I 15 C-DAC hyPACK-2013

Dual-Core AMD Opteron Processor configuration

 Current Systems (Intel /AMD 64 architecture) allows a 64-bit

operating system to run existing 16-bit & 32-bit applications

 64-bit mode , which provides 64-bit addressing and expanded

register resources to support higher performance for re-complied 64-

bit programs.

 Use 64-bit registers for 64-bit integer arithmetic.

 Load-Execute Instructions.

General 64-Bit Optimisations

Multi-Core Processors : Tuning & Performance/Compilers Part-I 16 C-DAC hyPACK-2013

General 64-Bit Optimizations

 Current Systems (Intel /AMD 64 architecture) allows a 64-bit

operating system to run existing 16-bit & 32-bit applications

 64-bit mode, which provides 64-bit addressing and expanded

register resources to support higher performance for re-complied 64-

bit programs.

 Use 64-bit registers for 64-bit integer arithmetic.

General 64-Bit Optimisations

Instruction-Decoding Optimizations

 Load-Execute Instructions

Multi-Core Processors : Tuning & Performance/Compilers Part-I 17 C-DAC hyPACK-2013

 Memory-Size Mismatches

 Cc-NUMA

 Prefetch instructions (Increase effective Bandwidth)

 Memory Copy

 Stack Considerations

 Cache Issues when Writing Instruction Bytes to Memory

Cache & Memory Optimisations

Multi-Core Processors : Tuning & Performance/Compilers Part-I 18 C-DAC hyPACK-2013

 Data Parallel models
 Microsoft Research Accelerator

Multi-threaded Models
 OpenMP, MPI

 Cilk

 CUDA (NviDIA)

 Streaming Models
 Streamit

 Cilk

 Peakstream (Brook)

Programming Models

 Fortran 95, C, and C++ compilers

for Linux on AMD Opteron and

Intel 64-bit and 32-bit x86 CPUs

Multi-Core Processors : Tuning & Performance/Compilers Part-I 19 C-DAC hyPACK-2013

Critical Features Supported by x86 Compilers

Vector

SIMD

Support

Peels

Vector

Loops

Global

IPA

OpenMP Links

ACML

Lib

Profile

Guided

Feedback

Aligns

Vector

Loops

Parallel

Debuggers

Large

Array

Support

Medium

Memory

Model

PGI

GNU

Intel

Pathsc

ale

SUN

        

   

 



  











 

  









        

Compiler Comparisons Table





Intel Compiler use Intel MKL libraries

  

Multi-Core Processors : Tuning & Performance/Compilers Part-I 20 C-DAC hyPACK-2013

Gains from tuning categories

Tuning Category Typical Range of Gain

Source range 25-100%

Compiler Flags 5-20%

Use of libraries 25-200%

Assembly coding / tweaking 5-20%

Manual prefetching 5-30%

TLB thrashing/cache 20-100%

Using vis.inlines/micro-

vectorization

100-200%

Multi-Core Processors : Tuning & Performance/Compilers Part-I 21 C-DAC hyPACK-2013

Compilers (1)
 Compilers : translate the abstract operational semantics of a

program into a form that makes effective use of a highly

complex machine architecture

 Different architectural features exist and sometimes interact in

complex ways.

 There is often trade-off between exploiting parallelism and

exploiting locality to reduce yet another widening gap the

memory wall.

 For the compiler : This means combining multiple program

transformations (polyhedral models are useful here)

 Access latency and bandwidth of the memory subsystems

have always been a bottleneck. Get worse with Mutli-core..

Compiler Techniques : Background

Multi-Core Processors : Tuning & Performance/Compilers Part-I 22 C-DAC hyPACK-2013

Compilers (2)

 Program optimization is over huge and unstructured search

spaces: this combinational task is poorly achieved in general,

resulting in weak scalability and disappointing sustained

performance.

 Even when programming models are explicitly parallel (data

parallelism, threads, etc.,) advanced compiler technology is

needed.

 To relieve the programmer from scheduling and mapping

the application to computational cores

 For understanding the memory model and communication

details

Compiler Techniques : Background

Multi-Core Processors : Tuning & Performance/Compilers Part-I 23 C-DAC hyPACK-2013

Compilers (3)

 Even with annotations (e.g., OpenMP directives) or sufficient

static information, compilers have a hard time exploring the

huge and unstructured search space associated with lower

level mapping and optimization challenges.

 The compiler and run-time system are responsible for most of

the code generation decisions to map the simplified and ideal

operational semantics of the source program to the highly

complex machine architecture.

Compiler Techniques : Background

Multi-Core Processors : Tuning & Performance/Compilers Part-I 24 C-DAC hyPACK-2013

Platform Compiler Command Description

IBM

AIX

xlc_r / cc_r C (ANSI / non-ANSI)

xlc_r C++

xlf_r –qnosave

xlf90_r -qnosave

Fortran – using IBM’s Pthreads API (non-

portable)

INTEL

LINUX

icc –pthread C

icpc –pthread C++

COMPAQ

Tru64

cc –pthread C

cxx –pthread C++

All Above

Platforms

gcc –pthread GNU C

g++ –pthread GNU C++

guidec –pthread KAIC (if installed)

kcc –pthread KAIC++ (if installed)

Complier Optimizations flags

Multi-Core Processors : Tuning & Performance/Compilers Part-I 25 C-DAC hyPACK-2013

Compiler Options for Performance

Compiler optimization options:

 -xO1 thru -xO5 (default is “none”, -O implies -xO3)

 -fast:easy to use, best performance on most code,but

it assumes compile platform = run platform and makes

Floating point arithmetic simplifications.

 Understand program behavior and assert to optimizer:
-xrestrict, if only restricted pointers are passed to functions

-xalias_level, if pointers behave in certain ways

-fsimple if FP arithmetic can be simplified

 Target machine-related:
-xprefetch, -xprefetch_level

-xtarget=, -xarch=, -xcache=, -xchip=

-xvector to convert DO loops into vector

Multi-Core Processors : Tuning & Performance/Compilers Part-I 26 C-DAC hyPACK-2013

Compiler Optimization Switches

 Fortran and C compilers have different levels of optimization that can

do a fairly good job at improving a program’s performance. The level

is specified at compilation time with –O switch.

 A same level of optimization on different machines will not always

produce the same improvements (don’t be surprised!)

 –O is either default level of optimization. Safe level of optimization.

 – O2 (same as –O on some machines) simple inline optimizations

 – O3 (and –O4 on some machines) more complex optimizations

 designed to pipeline code, but may alter semantics of program
 – fast Selects the optimum combination of compilation options for

speed.

 – parallel Parallelizes loops.
 Quite often, just a few simple changes to one’s code improves

performance by a factor of 2,3, or better!

Single Core Performance: Compiler Optimization

Multi-Core Processors : Tuning & Performance/Compilers Part-I 27 C-DAC hyPACK-2013

 - stackvar

 Tells the compiler to put most variables on the stack rather than

statically allocate them.

 - stackvar is almost always a good idea, and it is crucial when

parallelization.

 Concurrently running two copies of a subroutine that uses static

allocation almost never works correctly.

 You can control stack versus static allocation for each variable.

 Variables that appear in DATA, COMMON, SAVE, or

EQUIVALENCE statements will be static regardless of whether
you specify -stackvar.

Basic Compiler Techniques : Local variables on the Stack

Multi-Core Processors : Tuning & Performance/Compilers Part-I 28 C-DAC hyPACK-2013

Basic Compiler Techniques

- fast

 Run program with a reasonable level of optimization may change

its meaning on different machines.

 It strikes balance between speed, portability, and safety.

 -fast is often a good way to et a first-cut approximation of how

fast your program can run with a reasonable level of optimization

 -fast should not be used to build the production code.

 The meaning of –fast will often change from one release to

another

 As with –native, -fast may change its meaning on

different machines

(Contd..)

Multi-Core Processors : Tuning & Performance/Compilers Part-I 29 C-DAC hyPACK-2013

Single Core : Compiler Features

- O : Set optimization level

- fast : Select a set of flags likely to improve speed

- stackvar : put local variables on stack

- xlibmopt : link optimized libraries

- xarch : Specify instruction set architecture

- xchip : Specifies the target processor for use by the

optimizer.

- native : Compile for best performance on localhost.

- xprofile : Collects data for a profile or uses a profile to

optimize.

- fns : Turns on the SPARC nonstandard floating-point

mode.
- xunroll n : Unroll loops n times.

Multi-Core Processors : Tuning & Performance/Compilers Part-I 30 C-DAC hyPACK-2013

Source Code Optimizations

Improve usage of data cache, TLB

Use VIS instructions (templates) directly, via –xvis

option

Optimize data alignment (also: #pragma align,dalign)

Prevent Register Window overflow

Creating inline assembly templates for performance

critical routines

Loop Optimizations that compilers may miss:
Restructuring for pipelining and prefetching

Loop splitting/fission

Loop Peeling

Loop interchange

Loop unrolling and tiling

Pragma directed

Multi-Core Processors : Tuning & Performance/Compilers Part-I 31 C-DAC hyPACK-2013

Parallel programming-Compilation switches

Automatic and directives based parallelization

Allow compiler to do automatic and directive – based parallelization
 -x autopar, -x explicitpar, -x parallel, -tell the compiler

to parallelize your program.

 xautopar: tells the compiler to do only those parallelization that it
can do automatically

 xexplicitpar: tells the compiler to do only those parallelization
that you have directed it to do with programs in the source

 xparallel: tells the compiler to parallelize both automatically
and under pragma control

 xreduction: tells the compiler that it may parallelize reduction
loops. A reduction loop is a loop that produces output with smaller
dimension than the input.

Multi-Core Processors : Tuning & Performance/Compilers Part-I 32 C-DAC hyPACK-2013

Path Scale Compiler Benchmarks

• SPEC@CPU2000

• SPEC@Int2000

• SPEC@fp2000

• SPEC ompM2001 suite of OpenMP Benchmarks

 Pathscale Compilers publish SPEC results on SPEC

web-site

 AMD SPEC Results for Dual Core Opteron using

PathScale Compilers

 IBM, HP, Fujitsu-Siemens, Sun and AMD use

PathScale Compliers to get performance on AMD64-

based Linux Systems.

http://www.pathscale.com/

mailto:SPEC@fp2000

Multi-Core Processors : Tuning & Performance/Compilers Part-I 33 C-DAC hyPACK-2013

 STEP 0: Build application using the following procedure:

 compile all files with the most aggressive optimization flags below:

 -tp k8-64 –fastsse

 if compilation fails or the application doesn’t run properly, turn off

vectorization:

 -tp k8-64 –fast –Mscalarsse

 if problems persist compile at Optimization level 1:

 -tp k8-64 –O0

 STEP 1: Profile binary and determine performance critical
routines

 STEP 2: Repeat STEP 0 on performance critical functions, one

at a time, and run binary after each step to check stability

Tuning & Performance with Compilers

Maintaining Stability while Optimizing

Multi-Core Processors : Tuning & Performance/Compilers Part-I 34 C-DAC hyPACK-2013

 Below are 3 different sets of recommended PGI compiler
flags for flag mining application source bases:

 Most aggressive: -tp k8-64 –fastsse –Mipa=fast

 enables instruction level tuning for Opteron, O2 level
optimizations, sse scalar and vector code generation, inter-
procedural analysis, LRE optimizations and unrolling

 strongly recommended for any single precision source code

 Middle of the ground: -tp k8-64 –fast –Mscalarsse

 enables all of the most aggressive except vector code generation,
which can reorder loops and generate slightly different results

 in double precision source bases a good substitute since Opteron
has the same throughput on both scalar and vector code

 Least aggressive: -tp k8-64 –O0 (or –O1)

PGI Compiler Flags – Optimization Flags

PGI is an independent supplier of high performance scalar and parallel compilers and

tools for workstations, servers, and high-performance computing. http://www.pgroup.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-I 35 C-DAC hyPACK-2013

 -mcmodel=medium

 use if your application statically allocates a net sum of data
structures greater than 2GB

 -Mlarge_arrays

 use if any array in your application is greater than 2GB

 -KPIC

 use when linking to shared object (dynamically linked) libraries

 -mp

 process OpenMP/SGI directives/pragmas (build multi-threaded code)

 -Mconcur

 attempt auto-parallelization of your code on SMP system with
OpenMP

PGI Compiler Flags – Functionality Flags

Multi-Core Processors : Tuning & Performance/Compilers Part-I 36 C-DAC hyPACK-2013

Below are 3 different sets of recommended PGI compiler flags for
flag mining application source bases:

 Most aggressive: -O3

 loop transformations, instruction preference tuning, cache tiling,
& SIMD code generation (CG). Generally provides the best
performance but may cause compilation failure or slow
performance in some cases

 strongly recommended for any single precision source code

 Middle of the ground: -O2

 enables most options by –O3, including SIMD CG, instruction
preferences, common sub-expression elimination, & pipelining
and unrolling.

 in double precision source bases a good substitute since
Opteron has the same throughput on both scalar and vector code

 Least aggressive: -O1

PGI Compiler Flags – Optimization Flags

Multi-Core Processors : Tuning & Performance/Compilers Part-I 37 C-DAC hyPACK-2013

 -mcmodel=medium

 use if your application statically allocates a net sum of data

structures greater than 2GB

 -g77

 enables full compatibility with g77 produced objects and libraries

 (must use this option to link to GNU ACML libraries)

 -fpic

 use when linking to shared object (dynamically linked) libraries

 -safefp

 performs certain floating point operations in a slower manner that
avoids overflow, underflow and assures proper handling of NaNs

Absoft Compiler Flags – Functionality Flags

Absoft Pro Fortran v10.1 - Superior Fortran Tools: Absoft combines industry-leading
performance on multi-core AMD & Intel CPUs, Fx3 the best Fortran/C debugger,.
http://www.absoft.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-I 38 C-DAC hyPACK-2013

 Most aggressive: -Ofast

 Equivalent to –O3 –ipa –OPT:Ofast –fno-math-errno

 Aggressive : -O3

 optimizations for highest quality code enabled at cost of compile

time

 Some generally beneficial optimization included may hurt

performance

 Reasonable: -O2

 Extensive conservative optimizations

 Optimizations almost always beneficial

 Faster compile time

 Avoids changes which affect floating point accuracy

Pathscale Compiler Flags – Optimization Flags

http://www.pathscale.com/

PathScale Compiler Suite has been optimized for both the AMD64 and EM64T

architectures. The PathScale™ Compiler Suite is consistently proving to be the

highest performing 64-bit compilers for AMD-based Opteron.

Multi-Core Processors : Tuning & Performance/Compilers Part-I 39 C-DAC hyPACK-2013

 - mcmodel=medium

 use if static data structures are greater than 2GB

 - ffortran-bounds-check

 (fortran) check array bounds

 - shared

 generate position independent code for calling shared
object libraries

 Feedback Directed Optimization

 STEP 0: Compile binary with -fb_create_fbdata

 STEP 1: Run code collect data

 STEP 2: Recompile binary with -fb_opt fbdat

- march = (opteron|athlon64|athlon64fx)

 Optimize code for selected platform (Opteron is default)

Pathscale Compiler Flags – Functionality Flags

http://www.pathscale.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-I 40 C-DAC hyPACK-2013

PathScale 2.1 64-bit optimization flags:

F77: -O3 -LNO:fu=9OPT:div_split:fast_math:fast_sqrt -IPA:plimit=3500

F90: -Ofast -OPT:fast_math=on -WOPT:if_conv=off -LNO:fu=9:full_unroll_size=7000

Pathscale Compiler Flags – Functionality Flags

http://www.pathscale.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-I 41 C-DAC hyPACK-2013

Comp System Conf. Intel Caneland (Quad Socket Quad Core)

CPU Quad-Core Genuine Intel(R) CPU - Tigerton

No of Sockets /Cores 4 Sockets (Total : 16 Cores)

Clock-Speed 2.4 GHz per Core

Peak(Perf.) 153.6 Gflops

Memory/Core 4 GB per Core

Memory type FBDIMM

Total Memory 64 GB

Cache L1 = 128 KB; L2 = 8 MB Per socket shared

OS Red Hat Enterprise Linux Server release 5 (Tikanga)

x86_64 (64 bit)

Compilers Intel 10.0(icc; fce; OpenMP)

MPI Intel (/opt/intel/ict/3.0.1/mpi/3.0/bin64)

Math Libraries Math Kernel Library 9.1

Intel Caneland (Quad Core) System Configuration

Multi-Core Processors : Tuning & Performance/Compilers Part-I 42 C-DAC hyPACK-2013

Mathematical Libraries (Benchmarks)

 Linear Algebra (LA)
 Basic Linear Algebra Subroutines (BLAS)

 Level 1 (vector-vector operations)

 Level 2 (matrix-vector operations)

 Level 3 (matrix-matrix operations)

 Routines involving sparse vectors

 Linear Algebra PACKage (LAPACK)

 leverage BLAS to perform complex operations

 28 Threaded LAPACK routines

 Fast Fourier Transforms (FFTs)

 1D, 2D, single, double, r-r, r-c, c-r, c-c support

 C and Fortran interfaces

Multi-Core Processors : Tuning & Performance/Compilers Part-I 43 C-DAC hyPACK-2013

 BLAS, IMSL, NAG, LINPACK, ScaLAPACK LAPACK, etc.

Calls to these math libraries can often simplify coding.

They are portable across different platforms

They are usually fine-tuned to the specific hardware as well as

to the sizes of the array variables that are sent to them

– Example : Intel MKL & AMD Opteron ACML

 User can often parallelize at a higher level by running the

performance subroutines serially.

 It also has more favorable cache behavior
 Synchronization points may be less
 Performance gain is expected but depends on the problem size.

Multi Core Processors Performance: Use of MATH LIBRARIES

Multi-Core Processors : Tuning & Performance/Compilers Part-I 44 C-DAC hyPACK-2013

Features

 BLAS, LAPACK, FFT Performance

 Open MP Performance

 AMD : ACML 2.5 /2.X or 3.X

 Intel : MKL

 IBM : Power 5/6 - ESSL

Mathematical Libraries (Benchmarks)

 How good is Benchmark performance?

Multi-Core Processors : Tuning & Performance/Compilers Part-I 45 C-DAC hyPACK-2013

Multi Core

(CPUs)

HPL Matrix Size/

Block size/ (P,Q)

Peak Perf

(Gflops)

Sust. Perf

(Gflops)

Utilization

(%)

4 40960/120(2,2) 38.4 32.54 84.73

8 42240/120(4,2) 76.8 60.72 79.06

16 40960/200(4,4) 153.6 97.09 63.20

83456/200(4,4)
Used 56 GB

153.6$ 116.2 76.0

88000/200(4,4)

 * 64 GB can be used

153.6*

122.3 79.4

Top500 : Benchmark on Multi Core Systems

Used Env : Intel 10.0(icc, MPI); Compiler Flag : -O3, -funroll-loops,-

fomit-frame-pointer.

For Top-500, algorithm parameters, tuning & performance of Compiler optimisations are

not tried to extract the sustained Performance.

Multi-Core Processors : Tuning & Performance/Compilers Part-I 46 C-DAC hyPACK-2013

 An Overview of Compilation Features of Multi Core Systems

 Performance of Top-500 Benchmark using Compiler Flags.

 An Overview of Compiler Suite performing 64-bit compilers for

AMD-based Opteron

Conclusions

Multi-Core Processors : Tuning & Performance/Compilers Part-I 47 C-DAC hyPACK-2013

1. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Programming, Boston, MA : Addison-Wesley

2. Butenhof, David R (1997), Programming with POSIX Threads , Boston, MA : Addison Wesley
Professional

3. Culler, David E., Jaswinder Pal Singh (1999), Parallel Computer Architecture - A
Hardware/Software Approach , San Francsico, CA : Morgan Kaufmann

4. Grama Ananth, Anshul Gupts, George Karypis and Vipin Kumar (2003), Introduction to Parallel
computing, Boston, MA : Addison-Wesley

5. Intel Corporation, (2003), Intel Hyper-Threading Technology, Technical User's Guide, Santa Clara
CA : Intel Corporation Available at : http://www.intel.com

6. Shameem Akhter, Jason Roberts (April 2006), Multi-Core Programming - Increasing
Performance through Software Multi-threading , Intel PRESS, Intel Corporation,

7. Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell (1996), Pthread Programming
O'Reilly and Associates, Newton, MA 02164,

8. James Reinders, Intel Threading Building Blocks – (2007) , O’REILLY series

9. Laurence T Yang & Minyi Guo (Editors), (2006) High Performance Computing - Paradigm and
Infrastructure Wiley Series on Parallel and Distributed computing, Albert Y. Zomaya, Series Editor

10. Intel Threading Methodology ; Principles and Practices Version 2.0 copy right (March 2003), Intel
Corporation

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-I 48 C-DAC hyPACK-2013

11. William Gropp, Ewing Lusk, Rajeev Thakur (1999), Using MPI-2, Advanced Features of the
Message-Passing Interface, The MIT Press..

12. Pacheco S. Peter, (1992), Parallel Programming with MPI, , University of Sanfrancisco, Morgan
Kaufman Publishers, Inc., Sanfrancisco, California

13. Kai Hwang, Zhiwei Xu, (1998), Scalable Parallel Computing (Technology Architecture
Programming), McGraw Hill New York.

14. Michael J. Quinn (2004), Parallel Programming in C with MPI and OpenMP McGraw-Hill
International Editions, Computer Science Series, McGraw-Hill, Inc. Newyork

15. Andrews, Grogory R. (2000), Foundations of Multithreaded, Parallel, and Distributed
Progrmaming, Boston, MA : Addison-Wesley

16. SunSoft. Solaris multithreaded programming guide. SunSoft Press, Mountainview, CA, (1996),
Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill,

17. Chandra, Rohit, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh Menon,
(2001),Parallel Programming in OpenMP San Fracncisco Moraan Kaufmann

18. S.Kieriman, D.Shah, and B.Smaalders (1995), Programming with Threads, SunSoft Press,
Mountainview, CA. 1995

19. Mattson Tim, (2002), Nuts and Bolts of multi-threaded Programming Santa Clara, CA : Intel
Corporation, Available at : http://www.intel.com

20. I. Foster (1995, Designing and Building Parallel Programs ; Concepts and tools for Parallel
Software Engineering, Addison-Wesley (1995)

21. J.Dongarra, I.S. Duff, D. Sorensen, and H.V.Vorst (1999), Numerical Linear Algebra for High
Performance Computers (Software, Environments, Tools) SIAM, 1999

References

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/

Multi-Core Processors : Tuning & Performance/Compilers Part-I 49 C-DAC hyPACK-2013

22. OpenMP C and C++ Application Program Interface, Version 1.0". (1998), OpenMP Architecture
Review Board. October 1998

23. D. A. Lewine. Posix Programmer's Guide: (1991), Writing Portable Unix Programs with the Posix. 1
Standard. O'Reilly & Associates, 1991

24. Emery D. Berger, Kathryn S McKinley, Robert D Blumofe, Paul R.Wilson, Hoard : A Scalable Memory
Allocator for Multi-threaded Applications ; The Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-IX). Cambridge, MA,
November (2000). Web site URL : http://www.hoard.org/

25. Marc Snir, Steve Otto, Steyen Huss-Lederman, David Walker and Jack Dongarra, (1998) MPI-The
Complete Reference: Volume 1, The MPI Core, second edition [MCMPI-07].

26. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir (1998) MPI-The Complete Reference: Volume 2, The MPI-2 Extensions

27. A. Zomaya, editor. Parallel and Distributed Computing Handbook. McGraw-Hill, (1996)

28. OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005)”, From the OpenMP
web site, URL : http://www.openmp.org/

29. Stokes, Jon 2002 Introduction to Multithreading, Super-threading and Hyper threading Ars
Technica, October (2002)

30. Andrews Gregory R. 2000, Foundations of Multi-threaded, Parallel and Distributed Programming,
Boston MA : Addison – Wesley (2000)

31. Deborah T. Marr , Frank Binns, David L. Hill, Glenn Hinton, David A Koufaty, J . Alan Miller, Michael
Upton, “Hyperthreading, Technology Architecture and Microarchitecture”, Intel (2000-01)

References

http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.hoard.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Multi-Core Processors : Tuning & Performance/Compilers Part-I 50 C-DAC hyPACK-2013

 Thank You
 Any questions ?

